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Abstract. Differential Evolution (DE) has been successfully applied to
various optimization problems. The performance of DE is affected by al-
gorithm parameters such as a scaling factor F and a crossover rate CR.
Many studies have been done to control the parameters adaptively. One
of the most successful studies on controlling the parameters is JADE. In
JADE, the values of each parameter are generated according to one prob-
ability density function (PDF) which is learned by the values in success
cases where the child is better than the parent. However, search perfor-
mance might be improved by learning multiple PDFs for each parameter
based on some characteristics of search points. In this study, search points
are divided into plural groups according to the rank of their objective
values and the PDFs are learned by parameter values in success cases for
each group.. . . The advantage of JADE with the group-based learning is
shown by solving thirteen benchmark problems.
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1 Introduction

Optimization problems, especially nonlinear optimization problems, are very im-
portant and frequently appear in the real world. There exist many studies on
solving optimization problems using evolutionary algorithms (EAs). Differential
evolution (DE) is an EA proposed by Storn and Price [9]. DE has been success-
fully applied to optimization problems including non-linear, non-differentiable,
non-convex and multimodal functions [2, 3, 6]. It has been shown that DE is a
very fast and robust algorithm.

The performance of DE is affected by algorithm parameters such as a scaling
factor F , a crossover rate CR and population size, and by mutation strategies
such as a rand strategy and a best strategy. Many studies have been done to
control the parameters and the strategies. One of the most successful studies on
controlling the parameters is JADE(adaptive DE with optional external archive)
[18]. In JADE, the values of parameters F and CR are generated according to



the corresponding probability density function (PDF) and a child is created
from the parent using the generated values. The values in success cases, where
the child is better than the parent, are used to learn the PDFs. As for F , a
location parameter of Cauchy distribution is learned, the scale parameter is
fixed and values of F are generated according to the Cauchy distribution. As for
CR, a mean of normal distribution is learned, the standard deviation is fixed
and values of CR are generated according to the normal distribution. However,
search performance might be improved by learning multiple PDFs for F and CR
based on some characteristics of search points.

In this study, group-based learning of the PDFs is proposed. Search points
are divided into plural groups according to the rank of their objective values.
The PDFs are learned by parameter values in success cases for each group. The
advantage of JADE with the group-based learning is shown by solving thirteen
benchmark problems.

In Section 2, related works are described. DE and JADE are briefly explained
in Section 3. In Section 4, JADE with the group-based learning is proposed. The
experimental results are shown in Section 5. Finally, conclusions are described
in Section 6.

2 Related Works

The performance of DE is affected by control parameters such as the scaling
factor F , the crossover rate CR and the population size N , and by mutation
strategies such as the rand strategy and the best strategy. Many researchers
have been studying on controlling the parameters and the strategies.

The methods of controlling the parameters can be classified into some cate-
gories as follows:

(1) selection-based control: Strategies and parameter values are selected regard-
less of current search state. CoDE(composite DE) [15] generates three trial
vectors using three strategies with randomly selected parameter values from
parameter candidate sets and the best trial vector will head to the survivor
selection.

(2) observation-based control: The current search state is observed, proper pa-
rameter values are inferred according to the observation, and parameters
and/or strategies are dynamically controlled. FADE(Fuzzy Adaptive DE) [5]
observes the movement of search points and the change of function values
between successive generations, and controls F and CR. DESFC(DE with
Speciation and Fuzzy Clustering) [10] adopts fuzzy clustering, observes par-
tition entropy of search points, and controls CR and the mutation strategies
between the rand and the species-best strategy. LMDE(DE with detecting
Landscape Modality) [11, 12] detects the landscape modality such as uni-
modal or multimodal using the change of the objective values at sampling
points which are equally spaced along a line. If the landscape is unimodal,
greedy parameter settings for local search are selected. Otherwise, parameter
settings for global search are selected.



(3) success-based control: It is recognized as a success case when a better search
point than the parent is generated. The parameters and/or strategies are ad-
justed so that the values in the success cases are frequently used. It is thought
that the self-adaptation, where parameters are contained in individuals and
are evolved by applying evolutionary operators to the parameters, is included
in this category. DESAP(DE with Self-Adapting Populations) [14] controls
F,CR and N self-adaptively. SaDE(Self-adaptive DE) [7] controls the se-
lection probability of the mutation strategies according to the success rates
and controls the mean value of CR for each strategy according to the mean
value in success case. jDE(self-adaptive DE algorithm) [1] controls F and
CR self-adaptively. JADE(adaptive DE with optional external archive) [18]
and MDE pBX(modified DE with p-best crossover) [4] control the mean or
power mean values of F and CR according to the mean values in success
cases. CADE(Correlation-based Adaptive DE) [13] introduces the correla-
tion of F and CR to JADE.

In the category (1), useful knowledge to improve the search efficiency is ig-
nored. In the category (2), it is difficult to select proper type of observation which
is independent of the optimization problem and its scale. In the category (3),
when a new good search point is found near the parent, parameters are adjusted
to the direction of convergence. In problems with ridge landscape or multimodal
landscape, where good search points exist in small region, parameters are tuned
for small success and big success will be missed. Thus, search process would be
trapped at a local optimal solution. JADE adopted a weighted mean value for
F , which is larger than a usual mean value, and succeeded to reduce the problem
of the convergence.

In this study, we propose to improve JADE in the category (3) by introducing
group-based learning according to the rank of objective values, which belongs
the category (2). Thus, the proposed method is a hybrid method of the category
(2) and (3).

3 Optimization by Differential Evolution

3.1 Optimization Problems

In this study, the following optimization problem with lower bound and upper
bound constraints will be discussed.

minimize f(x)
subject to lj ≤ xj ≤ uj , j = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vector and f(x) is an objective
function. The function f is a nonlinear real-valued function. Values lj and uj

are the lower bound and the upper bound of xj , respectively.



3.2 Differential Evolution

In DE, initial individuals are randomly generated within given search space and
form an initial population of size N . Each individual xi, i = 1, 2, · · · , N contains
D genes as decision variables. At each generation, all individuals are selected
as parents. Each parent is processed as follows: The mutation operation begins
by choosing several individuals from the population except for the parent in
the processing. The first individual is a base vector. All subsequent individuals
are paired to create difference vectors. The difference vectors are scaled by a
scaling factor F and added to the base vector. The resulting vector, or a mutant
vector, is then recombined with the parent. The probability of recombination
at an element is controlled by a crossover rate CR. This crossover operation
produces a child, or a trial vector. Finally, for survivor selection, the trial vector
is accepted for the next generation if the trial vector is better than the parent.

There are some variants of DE that have been proposed. The variants are
classified using the notation DE/base/num/cross such as DE/rand/1/bin and
DE/rand/1/exp.

“base” specifies a way of selecting an individual that will form the base vector.
For example, DE/rand selects an individual for the base vector at random from
the population. DE/best selects the best individual in the population.

“num” specifies the number of difference vectors used to perturb the base
vector. In case of DE/rand/1, for example, for each parent xi, three individuals
xp1, xp2 and xp3 are chosen randomly from the population without overlapping
xi and each other. A new vector, or a mutant vector x′ is generated by the base
vector xp1 and the difference vector xp2 − xp3, where F is the scaling factor.

x′ = xp1 + F (xp2 − xp3) (2)

“cross” specifies the type of crossover that is used to create a child. For exam-
ple, ‘bin’ indicates that the crossover is controlled by the binomial crossover using
a constant crossover rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing the crossover rate.

3.3 JADE

In JADE, the mean value of the scaling factor µF and the mean value of the
crossover rate µCR are learned to define two PDFs, where initial values are
µF=µCR=0.5. The scaling factor Fi and the crossover rate CRi for each indi-
vidual xi are independently generated according to the two PDFs as follows:

Fi ∼ C(µF , σF ) (3)

CRi ∼ N(µCR, σ
2
CR) (4)

where Fi is a random variable according to a Cauchy distribution C(µF , σF )
with a location parameter µF and a scale parameter σF=0.1. CRi is a random
variable according to a normal distribution N(µCR, σ

2
CR) of a mean µCR and a

standard deviation σCR=0.1. CRi is truncated to [0, 1] and Fi is truncated to



be 1 if Fi > 1 or regenerated if Fi ≤ 0. The location µF and the mean µCR are
updated as follows:

µF = (1− c)µF + cSF 2/SF (5)

µCR = (1− c)µCR + cSCR/SN (6)

where SN is the number of success cases, SF , SF 2 and SCR are the sum of F ,
F 2 and CR in success cases, respectively. A constant c is a weight of update in
(0,1] and the recommended value is 0.1.

JADE adopts a strategy called “current-to-pbest“ where an intermediate
point between a parent xi and a randomly selected individual from top individ-
uals is used as a base vector. A mutation vector is generated by current-to-pbest
without archive as follows:

m = xi + Fi(x
pbest − xi) + Fi(x

r2 − xr3) (7)

where xpbest is a randomly selected individual from the top 100p% individuals.
The child xchild is generated from xi and m using the binomial crossover.

In order to satisfy bound constraints, a child that is outside of the search
space is moved into the inside of the search space. In JADE, each outside element
of the child is set to be the middle between the corresponding boundary and the
element of the parent as follows:

xchild
j =

{
1
2
(lj + xi

j) (xchild
j < lj)

1
2
(uj + xi

j) (x
child
j > uj)

(8)

This operation is applied when a new point is generated by JADE operations.

4 Proposed method: Group-based learning

In this study, a population of individuals {xi | i = 1, 2, · · · , N} is divided into
K groups according to a criterion, where N is the number of individuals and
K is the number of groups. All individuals are sorted according to the criterion
and the rank ri (ri = 1, 2, · · · , N) is assigned to each individual xi. In this
study, the objective value of each individual is used as the criterion. The rank
of the best individual, who has the best objective value, is 1. In case of K = 2,
the individuals are divided into good individuals (group 1) and bad individuals
(group 2).

The group ID of xi, group(xi) is defined as follows:

group(xi) =
⌈ ri
N

K
⌉

(9)

In order to realize group-based learning using parameter control of JADE,
the following equations are adopted for each group k = 1, · · · ,K.

Fi ∼ C(µk
F , σF ) (10)

CRi ∼ N(µk
CR, σ

2
CR) (11)

µk
F = (1− c)µk

F + cSk
F 2/Sk

F (12)

µk
CR = (1− c)µk

CR + cSk
CR/S

k
N (13)



where µk
F is the location of Cauchy distribution for F in group k, µk

CR is the
mean of normal distribution for CR in group k. Sk

N is the number of success
cases in group k, where the better child than the parent is generated. Sk

F , S
k
F 2

and Sk
CR are the sum of Fi, F

2
i , CRi at success cases in group k, respectively.

As well as JADE, CRi is truncated to [0, 1] and Fi is truncated to be 1 if Fi > 1
or regenerated if Fi ≤ 0.

5 Numerical Experiments

In this paper, well-known thirteen benchmark problems are solved by the pro-
posed method ADEGL (Adaptive DE with Group-based Learning).

5.1 Test Problems and Experimental Conditions

The 13 scalable benchmark functions are sphere(f1), Schwefel 2.22(f2), Schwefel
1.2(f3), Schwefel 2.21(f4), Rosenbrock(f5), step(f6), noisy quartic(f7), Schwefel
2.26(f8), Rastrigin(f9), Ackley(f10), Griewank(f11), and two penalized functions
(f12 and f13), respectively [17,18]. Every function has an optimal objective value
0. Some characteristics are briefly summarized as follows: Functions f1 to f4 are
continuous unimodal functions. The function f5 is Rosenbrock function which
is unimodal for 2- and 3-dimensions but may have multiple minima in high
dimension cases [8]. The function f6 is a discontinuous step function, and f7 is
a noisy quartic function. Functions f8 to f13 are multimodal functions and the
number of their local minima increases exponentially with the problem dimension
[16].

Experimental conditions are same as JADE as follows: Population size N =
100, initial mean for scaling factor µF = 0.5 or µk

F = 0.5 and initial mean for
crossover rate µCR = 0.5 or µk

CR = 0.5, the pbest parameter p=0.05, and the
learning parameter c=0.1.

Independent 50 runs are performed for 13 problems. The number of dimen-
sions for the problems is 30 (D=30). Each run stops when the number of function
evaluations (FEs) exceeds the maximum number of evaluations FEmax. In each
function, different FEmax is adopted.

5.2 Experimental Results

Table 1 shows the experimental results on JADE, ADEGL (K=2) and ADEGL
(K=3). The mean value and the standard deviation of best objective values in 50
runs are shown for each function. The maximum number of function evaluations
is selected for each function and is shown in column labeled FEmax. The best
result among algorithms is highlighted using bold face fonts. Also, Wilcoxon
signed rank test is performed and the result for each function is shown under the
mean value. Symbols ‘+’, ‘−’ and ‘=’ are shown when ADEGL is significantly
better than JADE, is significantly worse than JADE, and is not significantly
different from JADE, respectively. Symbols ‘++’ and ‘−−’ are shown when the



significance level is 1% and ‘+’ and ‘−’ are shown when the significance level is
5%.

Table 1. Experimental results on 13 functions

FEmax JADE ADEGL (K=2) ADEGL (K=3)

f1 150,000 9.38e-59 ± 6.5e-58 4.32e-66 ± 1.3e-65 3.36e-64 ± 2.2e-63
++ ++

f2 200,000 4.19e-31 ± 2.4e-30 5.10e-32 ± 2.7e-31 2.57e-37 ± 1.6e-36
= ++

f3 500,000 8.17e-62 ± 3.0e-61 1.77e-59 ± 1.2e-58 2.25e-60 ± 1.5e-59
= =

f4 500,000 2.01e-23 ± 9.8e-23 1.20e-24 ± 4.3e-24 3.70e-24 ± 1.0e-23
+ =

f5 300,000 5.78e-01 ± 3.5e+00 7.97e-02 ± 5.6e-01 7.26e-01 ± 3.5e+00
= =

f6 10,000 3.02e+00 ± 1.3e+00 1.78e+00 ± 1.2e+00 1.98e+00 ± 1.1e+00
++ ++

f7 300,000 6.04e-04 ± 2.4e-04 7.11e-04 ± 2.3e-04 6.80e-04 ± 2.2e-04
= =

f8 100,000 2.37e+00 ± 1.7e+01 2.46e-05 ± 3.1e-05 1.18e+01 ± 3.6e+01
++ +

f9 100,000 1.01e-04 ± 3.9e-05 5.64e-05 ± 2.8e-05 5.95e-05 ± 3.0e-05
++ ++

f10 50,000 9.20e-10 ± 6.4e-10 4.22e-10 ± 3.0e-10 3.41e-10 ± 3.1e-10
++ ++

f11 50,000 1.15e-08 ± 6.9e-08 1.97e-04 ± 1.4e-03 3.46e-04 ± 1.7e-03
+ =

f12 50,000 2.40e-16 ± 1.6e-15 4.99e-18 ± 2.6e-17 1.37e-18 ± 5.5e-18
++ ++

f13 50,000 1.15e-16 ± 2.2e-16 2.17e-17 ± 5.1e-17 1.69e-17 ± 7.5e-17
++ ++

+ — 9 8
= — 4 5
− — 0 0

ADEGL (K=2) attained best mean results in 6 functions f1, f4, f5, f6, f8
and f9 out of 13 functions. ADEGL (K=3) attained best mean results in 4
functions f2, f10, f12 and f13. JADE attained best mean results in 3 functions
f3, f7 and f11. Also, ADEGL (K=2) attained significantly better results than
JADE in 9 functions f1, f4, f6, f8, f9, f10, f11, f12 and f13. ADEGL (K=3)
attained significantly better results than JADE in 8 functions f1, f2, f6, f8, f9,
f10, f12 and f13. Thus, it is thought that ADEGL (K=2) is the best method
among 3 methods and ADEGL (K=3) is the second best method. JADE could
not attain significantly better results than ADEGL of K=2 nor K=3.



Figure 1 shows the change of F and CR over the number of function evalu-
ations for f1 in case of K=2. ADEGL (K=2) tends to learn smaller values of F
and CR than those of JADE for the best group (group 1) and larger values of
F and CR than those of JADE for the worst group (group 2).
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Fig. 1. The graph of F and CR in f1

6 Conclusion

In this study, group-based learning of algorithm parameters is proposed, where
individuals are divided into plural groups according to the rank of objective
values and the parameters are learned for each group. DE with group learning
is applied optimization of various 13 functions including unimodal functions, a
function with ridge structure, multimodal functions. It is shown that the pro-
posed method ADEGL is effective compared with JADE. Also, it is shown that
parameters for good individuals are controlled to intensify convergence and pa-
rameters for bad individuals are controlled to keep divergence.

In the future, we will apply group-based learning to other adaptive optimiza-
tion algorithms including differential evolution and particle swarm optimization.
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