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Abstract— Differential Evolution (DE) is an evolutionary
algorithm. DE has been successfully applied to optimization
problems including non-linear, non-differentiable, non-convex
and multimodal functions. The performance of DE is affected by
algorithm parameters such as a scaling factor F and a crossover
rate CR. Many studies have been done to control the parameters
adaptively. One of the most successful studies on parameter
control is JADE. In JADE, two parameter values are generated
according to a probability density function which is learned by
the parameter values in success cases, where the child is better
than the parent. The values of two parameters are independently
generated. In this study, we propose a new method where the
values of two parameters are generated dependently using the
correlation coefficient. In each generation of DE, the pairs of
two parameter values in the success cases are stored and the
correlation coefficient is obtained. The parameter F is generated
according to Cauchy distribution. The parameter CR is generated
according to normal distribution of which mean is modified using
the generated value of F and the correlation coefficient. The effect
of the proposed method is shown by solving thirteen benchmark
problems.

Keywords—differential evolution; adaptive parameter control;
probability density function

I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs). Differential
evolution (DE) is an EA proposed by Storn and Price [1]. DE
has been successfully applied to optimization problems includ-
ing non-linear, non-differentiable, non-convex and multimodal
functions [2]–[4]. It has been shown that DE is a very fast and
robust algorithm.

The performance of DE is affected by algorithm parameters
such as a scaling factor F , a crossover rate CR and population
size, and by mutation strategies such as a rand strategy and
a best strategy. Many studies have been done to control the
parameters and the strategies. One of the most successful
studies on controlling the parameters is JADE(adaptive DE
with optional external archive) [5]. In JADE, the parameter
values of F and CR are generated according to a probability
density function and a child is created from the parent using
the generated values. The values in success cases, where the
child is better than the parent, are used to learn the probability
density function. The values of F are generated according to

Cauchy distribution of which location parameter is learned
and scale parameter is fixed. The values of CR are generated
according to normal distribution of which mean is learned and
standard deviation is fixed. The values of F and the values of
CR are independently generated.

Therefore, it is thought that JADE is a machine learning
system which learns the probability density function of the
parameters from training data, which are the parameter values
in the success cases. In the system, there are some methods to
learn more accurate probability density function:

(a) Considering dependency of the algorithm parameters
in the probability density function instead of suppos-
ing independence of them.

(b) Learning extra parameters such as standard deviation
in normal distribution, scale parameter in Cauchy
distribution, and so on.

(c) Learning not only a single distribution function but
also a mixture distribution of plural distribution func-
tions.

Note that an accurate probability density function may not lead
a good result because the success cases depend not only on
the parameter values but also on the parent, selected difference
vectors, and so on.

In this study, we propose a new method where parameter
values of F and CR are generated not independently but de-
pendently using the correlation coefficient. In each generation
of DE, the pairs of parameter values (F , CR) in the success
cases are stored and the correlation coefficient is obtained.
The parameter values are generated according to a probability
function as follows: F is generated according to Cauchy
distribution. The mean value of normal distribution function
for CR is modified using the generated value of F and the
correlation coefficient. A value of CR is generated according
to the modified normal distribution. The effect of the proposed
method is shown by solving thirteen benchmark problems
including unimodal problems and multimodal problems.

In Section II, related works are briefly reviewed. DE
and JADE are explained in Section III and IV, respectively.
JADE using correlation is proposed in Section V. In Section
VI, experimental results on benchmark problems are shown.
Finally, conclusions are described in Section VII.



II. RELATED WORKS

The methods of controlling algorithm parameters can be
classified into some categories as follows:

(1) selection-based control: Strategies and parameter values are
selected regardless of current search state. CoDE(composite
DE) [6] generates three trial vectors using three strategies with
randomly selected parameter values from parameter candidate
sets and the best trial vector will head to the survivor selection.

(2) observation-based control: The current search state is
observed, proper parameter values are inferred according to
the observation, and parameters and/or strategies are dynami-
cally controlled. FADE(Fuzzy Adaptive DE) [7] observes the
movement of search points and the change of function values
between successive generations, and controls F and CR.
DESFC(DE with Speciation and Fuzzy Clustering) [8] adopts
fuzzy clustering, observes partition entropy of search points,
and controls CR and the mutation strategies between the
rand and the species-best strategy. LMDE(DE with detecting
Landscape Modality) [9], [10] detects the landscape modality
such as unimodal or multimodal using the change of the
objective values at sampling points which are equally spaced
along a line. If the landscape is unimodal, greedy parameter
settings for local search are selected. Otherwise, parameter
settings for global search are selected.

(3) success-based control: It is recognized as a success case
when a better search point than the parent is generated. The
parameters and/or strategies are adjusted so that the values in
the success cases are frequently used. It is thought that the
self-adaptation, where parameters are contained in individuals
and are evolved by applying evolutionary operators to the
parameters, is included in this category. DESAP(DE with
Self-Adapting Populations) [11] controls F,CR and N self-
adaptively. SaDE(Self-adaptive DE) [12] controls the selection
probability of the mutation strategies according to the success
rates and controls the mean value of CR for each strategy
according to the mean value in success case. jDE(self-adaptive
DE algorithm) [13] controls F and CR self-adaptively. JADE
[5] and MDE pBX(modified DE with p-best crossover) [14]
control the mean or power mean values of F and CR accord-
ing to the mean values in success cases.

In the category (1), useful knowledge to improve the search
efficiency is ignored. In the category (2), it is difficult to
select proper type of observation which is independent of the
optimization problem and its scale. In the category (3), when
a new good search point is found near the parent, parameters
are adjusted to the direction of convergence. In problems with
ridge landscape or multimodal landscape, where good search
points exist in small region, parameters are tuned for small
success and big success will be missed. Thus, search process
would be trapped at a local optimal solution. In JADE, as for
a mean value of F a weighted mean value by the value of F
is used to generate larger F than a usual mean value and it is
succeeded to reduce the problem of the convergence.

In this study, we propose to improve JADE in the category
(3) by considering the correlation between F and CR in the
success cases. The mean values and a correlation coefficient
in success cases are used to control the probability density
function of F and CR.

III. OPTIMIZATION BY DIFFERENTIAL EVOLUTION

A. Optimization Problems

In this study, the following optimization problem with
lower bound and upper bound constraints will be discussed.

minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.

B. Differential Evolution

DE is a stochastic direct search method using a population
or multiple search points. In DE, initial individuals are
randomly generated within given search space and form an
initial population. Each individual contains D genes as deci-
sion variables. At each generation or iteration, all individuals
are selected as parents. Each parent is processed as follows:
The mutation operation begins by choosing several individuals
from the population except for the parent in the processing.
The first individual is a base vector. All subsequent individuals
are paired to create difference vectors. The difference vectors
are scaled by a scaling factor F and added to the base vector.
The resulting vector, or a mutant vector, is then recombined
with the parent. The probability of recombination at an element
is controlled by a crossover rate CR. This crossover operation
produces a trial vector. Finally, for survivor selection, the trial
vector is accepted for the next generation if the trial vector is
better than the parent.

There are some variants of DE that have been
proposed. The variants are classified using the notation
DE/base/num/cross such as DE/rand/1/bin and
DE/rand/1/exp. “base” specifies a way of selecting an
individual that will form the base vector. For example,
DE/rand selects an individual for the base vector at random
from the population. DE/best selects the best individual in
the population. “num” specifies the number of difference
vectors used to perturb the base vector. In case of DE/rand/1,
for example, for each parent xi, three individuals xr1, xr2

and xr3 are chosen randomly from the population without
overlapping xi and each other. A new vector, or a mutant
vector m is generated by the base vector xr1 and the
difference vector xr2 − xr3, where F is the scaling factor.

m = xr1 + F (xr2 − xr3) (2)

“cross” specifies the type of crossover that is used to create
a child. For example, ‘bin’ indicates that the crossover is
controlled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing
the crossover rate. Fig. 1 shows the binomial and exponential
crossover. A new child xchild is generated from the parent xi

and the mutant vector m, where CR is a crossover rate.



binomial crossover DE/·/·/bin
jrand=randint(1,D);
for(k=1; k ≤ D; k++) {

if(k == jrand || u(0, 1) < CR) xchild
k =mk;

else xchild
k =xi

k;
}

exponential crossover DE/·/·/exp
k=1; j=randint(1,D);
do {

xchild
j =mj;

k=k+1; j=(j + 1)%D;
} while(k ≤ D && u(0, 1) < CR);
while(k ≤ D) {

xchild
j =xi

j;
k=k+1; j=(j + 1)%D;

}

Fig. 1. Binomial and exponential crossover operation, where randint(1,D)
generates an integer randomly from [1, D] and u(l, r) is a uniform random
number generator in [l, r].

C. The Algorithm of Differential Evolution

The algorithm of DE is as follows:

Step1 Initialization of a population. Initial NP individ-
uals P = {xi|i = 1, 2, · · · , NP} are generated
randomly in search space and form an initial
population.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uation FEmax, the algorithm is terminated.

Step3 DE operations. Each individual xi is selected
as a target vector (parent). If all individuals are
selected, go to Step4. A mutant vector m is gen-
erated according to Eq. (2). A trial vector (child)
is generated from the parent xi and the mutant
vector m using a crossover operation shown in
Fig. 1. If the child is better than the parent, or
the DE operation is succeeded, the child survives.
Otherwise the parent survives. Go back to Step3
and the next individual is selected as a parent.

Step4 Survivor selection. The population P is formed
by the survivors. Go back to Step2.

Fig. 2 shows a pseudo-code of DE/rand/1.

IV. JADE

In JADE, the mean value of the scaling factor µF and
the mean value of the crossover rate µCR are learned to
define a probability density function, where initial values
are µF =µCR=0.5. The scaling factor Fi and the crossover
rate CRi for each individual xi are independently generated
according to the following equations:

Fi ∼ C(µF , σF ) (3)
CRi ∼ N(µCR, σ

2
CR) (4)

where C(µF , σF ) is a random variable according to Cauchy
distribution with a location parameter µF and a scale parameter
σF =0.1, N(µCR, σ

2
CR) is a random variable according to

normal distribution of a mean µCR and a standard deviation
σCR=0.1. CRi is truncated to [0, 1] and Fi is truncated to be

DE/rand/1()
{
// Initialize a population
P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
for(i=1; i ≤ N; i++) {

// DE operation
xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6∈ {i, p1});
xp3=Randomly selected from P(p3 6∈ {i, p1, p2});
m=xp1+F (xp2 − xp3);
xchild=trial vector is generated from
xi and m by a crossover operation;

// Survivor selection
if
(
f(xchild)<f(xi)

)
zi=xchild;

else zi=xi;
FE=FE+1;

}
P={zi, i = 1, 2, · · · , N};

}
}

Fig. 2. The pseudo-code of DE, FE is the number of function evaluations.

1 if Fi ≥ 1 or regenerated if Fi ≤ 0. The location µF and the
mean µCR are updated as follows:

µF = (1− c)µF + cSF 2/SF (5)
µCR = (1− c)µCR + cSCR/SN (6)

where SN is the number of success cases, SF , SF 2 and SCR

are the sum of F , F 2 and CR in success cases, respectively. A
constant c is a weight of update in (0,1] and the recommended
value is 0.1.

JADE adopts a strategy called “current-to-pbest“ where an
intermediate point between a target vector and a randomly
selected point from top individuals is used as a base vector. A
mutation vector is generated as follows:

m = xi + Fi(x
pbest − xi) + Fi(x

p2 − xp3) (7)

where xpbest is a randomly selected individual from the top
100p% individuals.

V. PROPOSED ALGORITHM

A. Conditional Normal Distribution

In general, the multivariate normal distribution of a k-
dimensional random vector u = (U1, U2, · · · , Uk) can be
written as follows:

u ∼ N(µ,Σ) (8)

f(u) =
1√

(2π)k|Σ|
exp

(
−1

2
(u− µ)TΣ−1(u− µ)

)
(9)

where µ is the mean vector, Σ is the covariance matrix, f is
the probability density function, |Σ| is the determinant of Σ,
and Σ−1 is the inverse matrix of Σ. In bivariate case where
k=2, the covariance matrix is defined as follows:

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(10)



where ρ is the correlation coefficient between U1 and U2. In
this case, the conditional distribution of U2 given U1 is as
follows:

U2|U1 = u1 ∼ N(µ2 + ρ
σ2

σ1
(u1 − µ1), (1− ρ2)σ2

2) (11)

B. Conditional Distribution between Algorithm Parameters

In this study, the bivariate distribution between algorithm
parameters F and CR is considered. Suppose that the param-
eter values in success cases are given by S = {(Fi, CRi)}.
The correlation ρ between F and CR is given as follows:

ρ =

∑
(Fi,CRi)∈S(Fi − µF )(CRi − µCR)

σFσCR
(12)

where µF and µCR are the means of F and CR, and σF and
σCR are the standard deviations of F and CR, respectively.
Eq.(11) can be described using F and CR as follows:

CR|F = Fi ∼ N(µCR + ρ
σCR

σF
(Fi − µF ), (1− ρ2)σ2

CR)(13)

However, since F is not generated according to normal dis-
tribution but according to Cauchy distribution, Eq.(13) needs
to be modified. In this paper, the following modification is
adopted:

• The deviation Fi − µF in Cauchy distribution of-
ten larger than the deviation in normal distribu-
tion. In order to avoid too large change of the
mean value µCR, when σCR

σF
(Fi − µF ) is out of

the interval [−σCR, σCR], the value is selected from
[−1.5σCR,−σCR] or [σCR, 1.5σCR] randomly.

• The fixed standard deviation σCR is used instead of√
(1− ρ2)σCR to keep proper deviation.

• If the number of success cases are very small, the
value of ρ often becomes about -1 or 1. In this paper,
ρ is updated only when the number of success cases
is greater than or equal to 5.

The algorithm of modified JADE using correlation (Corre-
lation based Adaptive DE, CADE) can be described as follows:

Step0 Parameter setup. The mean value of scaling factor
µF = 0.5 and the mean value of crossover rate
µCR = 0.5. The standard deviations σF =0.1 and
σCR=0.1. The list of success cases S is made
empty.

Step1 Initialization of the individuals. Initial NP in-
dividuals {xi|i = 1, 2, · · · , NP} are generated
randomly in search space S and form an initial
population.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uations FEmax, the algorithm is terminated.

Step3 DE operation with adaptive parameters. The scal-
ing factor Fi is generated according to Cauchy
distribution. The crossover rate CRi is generated
according to normal distribution using the cor-
relation. DE/current-to-pbest/1/bin operation with
Fi and CRi is executed and a new child xchild

is generated. If the new one is better than the
parent, the operation is treated as a success case

CADE/current-to-pbest/1/bin()
{

µF =µCR=0.5; σF = σCR=0.1; S=φ;
+ ρ = 0;
// Initialize a population

P=NP individuals generated randomly in S;
FE=FE+N;
for(t=1; FE ≤ FEmax; t++) {
for(i=1; i ≤ N; i++) {

do {
Fi=µF + C(0, σF );

} while(Fi ≤ 0);
if(Fi > 1) Fi = 1;

+ δ=σCR
σF

(Fi − µF );

+ if(δ < −σCR) δ=−σCRu(1, 1.5);
+ else if(δ > σCR) δ=σCRu(1, 1.5);
+ CRi=µCR + ρδ +N(0, σCR);

if(CRi < 0) CRi=0;
else if(CRi > 1) CRi=1;
xpbest=Randomly selected from top 100p% in P;
xr1=Randomly selected from P(r1 6∈ {i});
xr2=Randomly selected from P(r2 6∈ {i, r1});
x′=xi+Fi(x

pbest − xi)+Fi(x
r1 − xr2);

xchild=trial vector is generated from
xi and x′ by binomial crossover;

FE=FE+1;
// Survivor selection

if(f(xchild) < f(z)) {
zi=xchild;
S=S ∪ {(Fi, CRi)}; // success cases are stored

}
else zi=xi;

}
P={zi};
if(|S| > 0) {

µF =(1− c)µF + c
∑

Fi∈S
F 2
i /
∑

Fi∈S
F;

µCR=(1− c)µCR + c
∑

CRi∈S
CRi/|S|;

+ if(|S| ≥ 5) {
+ ρ0=correlation between F and CR in S;
+ ρ=(1− c)ρ+ cρ0;
+ }

}
}

}

Fig. 3. The pseudo-code of CADE

and the child becomes a survivor. The successful
combination of parameter values (Fi, CRi) is
added to success cases S. Otherwise, the parent
xi becomes a survivor.

Step4 Update of adaptive parameters. The mean of the
scaling factor µF and the mean of crossover rate
µCR are updated using S. If there are enough
success cases, ρ is updated using S.

Step5 Go back to Step2.

Fig. 3 shows the pseudo-code of CADE. The lines which
start with ‘+’ show the modification to JADE.

VI. SOLVING OPTIMIZATION PROBLEMS

In this paper, well-known thirteen benchmark problems are
solved.



A. Test Problems and Experimental Conditions

The 13 scalable benchmark functions are shown in Table I
[5]. All functions have an optimal value 0. Some characteristics
are briefly summarized as follows: Functions f1 to f4 are
continuous unimodal functions. The function f5 is Rosenbrock
function which is unimodal for 2- and 3-dimensions but may
have multiple minima in high dimension cases [15]. The
function f6 is a discontinuous step function, and f7 is a noisy
quartic function. Functions f8 to f13 are multimodal functions
and the number of their local minima increases exponentially
with the problem dimension [16].

TABLE I. TEST FUNCTIONS OF DIMENSION D. THESE ARE SPHERE,
SCHWEFEL 2.22, SCHWEFEL 1.2, SCHWEFEL 2.21, ROSENBROCK, STEP,

NOISY QUARTIC, SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK, AND
TWO PENALIZED FUNCTIONS, RESPECTIVELY [17]

Test functions Bound constraints

f1(x) =
∑D

i=1
x2
i [−100, 100]D

f2(x) =
∑D

i=1
|xi| +

∏D

i=1
|xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i

j=1
xj

)2
[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1
bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1
ix4

i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1
−xi sin

√
|xi|

+ D · 418.98288727243369
[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D

i=1
x2
i

)
− exp

(
1
D

∑D

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) = 1
4000

∑D

i=1
x2
i −

∏D

i=1
cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D [10 sin2(πy1) +

∑D−1

i=1
(yi − 1)2

{1 + 10 sin2(πyi+1)} + (yD − 1)2]

+
∑D

i=1
u(xi, 10, 100, 4)

where yi = 1 + 1
4 (xi + 1) and u(xi, a, k,m) ={

k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1) +
∑D−1

i=1
(xi − 1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}] +
∑D

i=1
u(xi, 5, 100, 4)

[−50, 50]D

Independent 50 runs are performed for 13 problems. The
dimension of problems is 30 (D=30). Each run stops when the
number of function evaluations (FEs) exceeds the maximum
number of evaluations FEmax.

B. Experimental Results on the Proposed Method

The control parameters for CADE are same as JADE: The
population size NP=100, the initial means µF =µCR=0.5, the
standard deviations are fixed as σF =σCR=0.1 and c=0.1. The
initial correlation coefficient ρ=0.

Table II compares CADE with other methods including
JADE, jDE, SaDE, DE/rand/1/bin and PSO. Results except for
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Fig. 4. The graph of parameter values in CADE and JADE

CADE are taken from [5]. The best result among algorithms
is highlighted using bold face fonts.

CADE attained the best results among all methods in
10 problems f1, f2, f5, f6, f7, f9, f10, f11, f12 and f13.
Also, CADE attained the best final results in 3 problems
f5, f10 and f13, where the 8 final results are shown in the
bottom row for functions f5, f6 and from f8 to f13. CADE
outperformed JADE without archive in 12 problems and in
3 problems for final results. CADE outperformed JADE with
archive in 11 problems and in 4 problems for final results.
CADE outperformed jDE in 11 problems, SaDE and PSO in
12 problems, and DE/rand/1/bin in all problems. Thus, it is
thought that CADE is effective to various problems.

Figure 4 show the change of parameter values F and CR in
CADE and JADE for a unimodal function f1 and a multimodal
function f10. Also, the change of ρ in CADE is shown. In
functions f1, f2 and f13, although the values of F are similar
in CADE and JADE, the values of CR in CADE are larger
than those of JADE. It is thought that large CR amplifies
the convergence speed of CADE. In functions f3 to f9 and
f11, the difference between CADE and JADE is not large.
In multimodal function f10 and f12, CADE adopted smaller
F and larger CR than JADE and attained better results than
JADE.



TABLE II. EXPERIMENTAL RESULTS ON CADE AND OTHER DES. MEAN VALUES AND STANDARD DEVIATIONS IN 50 RUNS ARE SHOWN

FEmax CADE JADE w/o archive JADE with archive jDE SaDE DE/rand/1/bin PSO
f1 150,000 1.29e-70 (8.24e-70) 1.8e-60 (8.4e-60) 1.3e-54 (9.2e-54) 2.5e-28 (3.5e-28) 4.5e-20 (6.9e-20) 9.8e-14 (8.4e-14) 9.6e-42 (2.7e-41)
f2 200,000 5.05e-50 (1.37e-49) 1.8e-25 (8.8e-25) 3.9e-22 (2.7e-21) 1.5e-23 (1.0e-23) 1.9e-14 (1.05e-14) 1.6e-09 (1.1e-09) 9.3e-21 (6.3e-20)
f3 500,000 2.26e-62 (1.20e-61) 5.7e-61 (2.7e-60) 6.0e-87 (1.9e-86) 5.2e-14 (1.1e-13) 9.0e-37 (5.43e-36) 6.6e-11 (8.8e-11) 2.5e-19 (3.9e-19)
f4 500,000 1.25e-07 (9.88e-08) 8.2e-24 (4.0e-23) 4.3e-66 (1.2e-65) 1.4e-15 (1.0e-15) 7.4e-11 (1.82e-10) 4.2e-01 (1.1e+00) 4.4e-14 (9.3e-14)
f5 300,000 1.62e-30 (5.21e-30) 8.0e-02 (5.6e-01) 3.2e-01 (1.1e+00) 1.3e+01 (1.4e+01) 2.1e+01 (7.8e+00) 2.1e+00 (1.5e+00) 2.5e+01 (3.2e+01)

2,000,000 1.62e-30 (5.21e-30) 8.0e-02 (5.6e-01) 3.2e-01 (1.1e+00) 8.0e-02 (5.6e-01) 1.8e+01 (6.7e+00) 8.0e-02 (5.6e-01) 1.7e+01 (2.3e+01)
f6 10,000 2.4e+00 (1.58e+00) 2.9e+00 (1.2e+00) 5.6e+00 (1.6e+00) 1.0e+03 (2.2e+02) 9.3e+02 (1.8e+02) 4.7e+03 (1.1e+03) 4.5e+01 (2.4e+01)

150,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 8.0e-02 (2.7e-01)
f7 300,000 6.33e-04 (2.30e-04) 6.4e-04 (2.5e-04) 6.8e-04 (2.5e-04) 3.3e-03 (8.5e-04) 4.8e-03 (1.2e-03) 4.7e-03 (1.2e-03) 2.5e-03 (1.4e-03)
f8 100,000 3.52e-06 (3.35e-06) 3.3e-05 (2.3e-05) 7.1e+00 (2.8e+01) 7.9e-11 (1.3e-10) 4.7e+00 (3.3e+01) 5.9e+03 (1.1e+03) 2.4e+03 (6.7e+02)

900,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 7.1e+00 (2.8e+01) 0.0e+00 (0.0e+00) 4.7e+00 (3.3e+01) 5.7e+01 (7.6e+01) 2.4e+03 (6.7e+02)
f9 100,000 9.94e-05 (6.20e-05) 1.0e-04 (6.0e-05) 1.4e-04 (6.5e-05) 1.5e-04 (2.0e-04) 1.2e-03 (6.5e-04) 1.8e+02 (1.3e+01) 5.2e+01 (1.6e+01)

500,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 7.1e+01 (2.1e+01) 5.2e+01 (1.6e+01)
f10 50,000 1.18e-10 (8.39e-11) 8.2e-10 (6.9e-10) 3.0e-09 (2.2e-09) 3.5e-04 (1.0e-04) 2.7e-03 (5.1e-04) 1.1e-01 (3.9e-02) 4.6e-01 (6.6e-01)

200,000 3.80e-15 (1.66e-15) 4.4e-15 (0.0e+00) 4.4e-15 (0.0e+00) 4.7e-15 (9.6e-16) 4.3e-14 (2.6e-14) 9.7e-11 (5.0e-11) 4.6e-01 (6.6e-01)
f11 50,000 1.73e-10 (1.21e-09) 9.9e-08 (6.0e-07) 2.0e-04 (1.4e-03) 1.9e-05 (5.8e-05) 7.8e-04 (1.2e-03) 2.0e-01 (1.1e-01) 1.3e-02 (1.7e-02)

300,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 2.0e-04 (1.4e-03) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 1.1e-02 (1.6e-02)
f12 50,000 1.14e-19 (3.84e-19) 4.6e-17 (1.9e-16) 3.8e-16 (8.3e-16) 1.6e-07 (1.5e-07) 1.9e-05 (9.2e-06) 1.2e-02 (1.0e-02) 1.9e-01 (3.9e-01)

150,000 1.57e-32 (0.0e+00) 1.6e-32 (5.5e-48) 1.6e-32 (5.5e-48) 2.6e-29 (7.5e-29) 1.2e-19 (2.0e-19) 1.1e-14 (1.0e-14) 1.9e-01 (3.9e-01)
f13 50,000 5.68e-19 (1.22e-18) 2.0e-16 (6.5e-16) 1.2e-15 (2.8e-15) 1.5e-06 (9.8e-07) 6.1e-05 (2.0e-05) 7.5e-02 (3.8e-02) 2.9e-03 (4.8e-03)

150,000 1.35e-32 (0.0e+00) 1.4e-32 (1.1e-47) 1.4e-32 (1.1e-47) 1.9e-28 (2.2e-28) 1.7e-19 (2.4e-19) 7.5e-14 (4.8e-14) 2.9e-03 (4.8e-03)

VII. CONCLUSION

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve nonlinear optimization
problems. In this study, we proposed to improve JADE by in-
troducing the correlation of algorithm parameters in parameter
tuning. It was shown that CADE outperformed DE/rand/1/bin
in all problems. Also, CADE outperformed JADE, jDE, SaDE
and PSO in more than 10 problems out of 13 problems. Thus, it
is thought that CADE is a very efficient optimization algorithm
compared with other methods.

In the future, we will design more dynamic control of
parameter values for CADE.
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