
A New Binomial Crossover Considering Correlation
Among Decision Variables for Adaptive Differential Evolution

Tetsuyuki Takahama
Department of Intelligent Systems

Hiroshima City University
Asaminami-ku, Hiroshima, 731-3194 Japan

takahama@hiroshima-cu.ac.jp

Setsuko Sakai
Faculty of Commercial Sciences

Hiroshima Shudo University
Asaminami-ku, Hiroshima, 731-3195 Japan

setuko@shudo-u.ac.jp

Abstract—In population-based optimization methods such as
evolutionary algorithms, various information can be obtained
from the distribution of good search points. When problems with
strong dependency among decision variables are optimized, a
characteristic distribution, which is a thin elliptical distribution,
may appear. In order to generate good children, it is necessary
to change the variables simultaneously along the long axis of
the elliptical distribution. A similar distribution also may appear
when the search points are far from the optimal solution even in
problems with independent variables. In this study, we propose a
new crossover CBX which uses correlation coefficients of search
points in order to detect such distribution and realizes efficient
movement toward the optimal solution. The crossover points are
decided so that highly correlated variables are inherited at the
same time. However, if only CBX is used, the diversity of the
search points tends to be lost rapidly. The adaptive control of
the probability for applying CBX is also proposed. The advantage
of the proposed method is shown by solving several benchmark
problems.

Index Terms—differential evolution; correlating binomial
crossover; correlation coefficient; adaptive parameter control

I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs).

In population-based optimization methods such as EAs,
various information can be obtained from the distribution of
good search points. Problems with strong dependency among
decision variables are typical difficult optimization problems.
When such problems are optimized, a characteristic distribu-
tion, which is a thin elliptical distribution as shown in Fig.1,
may appear. In order to generate good children in this case,
it is necessary to change the variables simultaneously along
the long axis of the elliptical distribution so as to approach
the optimal solution. A similar distribution also may appear
when the search points are far from the optimal solution even
in problems with independent variables. It is considered that
the search points can be move toward the optimal solution
efficiently by simultaneously changing the variables.

In this study, we propose to use correlation coefficients
of search points in order to detect such distribution. The
correlation coefficient matrix between decision variables can
be obtained from the search points. The crossover points are

optimal

Fig. 1. The search points moving toward the optimal solution

decided so that highly correlated variables are inherited at
the same time. It is expected that the problems with strong
dependency among variables can be efficiently solved. Also,
search points far from the optimal solution can be efficiently
moved toward the optimal solution.

The binomial crossover (BX) is a crossover operation used
in differential evolution. In BX, a gene, which is inherited
to the child unconditionally, are randomly selected, and other
genes are inherited with the probability of the crossover rate. In
this study, we propose CBX (correlating binomial crossover)
which is a binomial crossover operation using correlation
coefficients. In CBX, the crossed position where a gene was
inherited to the child and the non-crossed position where a
gene was not inherited to the child are stored. When judging
whether a gene will be inherited or not, if the correlation
coefficient between the crossed position and the position of
the gene is high, the gene is inherited. If the correlation
coefficient between the non-crossed position and the position
of the gene is high, the gene is not inherited. Otherwise, the
gene is inherited with the probability of the crossover rate.

However, if only CBX is used as a crossover operation,
the diversity of the search points tends to be lost rapidly.
In order to keep the diversity, the probability of applying
CBX is adaptively adjusted in this study. Success cases, where
the child is better than the parent, are observed. The success
rates of CBX and BX are compared. The probability of the
crossover operation which has higher success rate is increased.

Differential evolution (DE), which is an EA proposed by

Storn and Price [1], has been successfully applied to optimiza-
tion problems including non-linear, non-differentiable, non-
convex and multimodal functions [2], [3]. It has been shown
that DE is a very fast and robust algorithm. The performance
of DE is affected by algorithm parameters such as a scaling
factor F , a crossover rate CR and so on. Many studies have
been done to control the parameters and the strategies. One
of the most successful studies on controlling the parameters
is JADE(adaptive DE with optional external archive) [4]. In
this study, CBX and adaptive adjustment of the probability
of applying CBX is introduced to JADE. The advantage of
the proposed method is shown by solving thirteen benchmark
problems.

In Section II, related works are described. DE and JADE
are briefly explained in Section III. In Section IV, CBX and
its adaptive control is proposed. The experimental results are
shown in Section V. Finally, conclusions are described in
Section VI.

II. RELATED WORKS

A. Parameter Control

The performance of DE is affected by control parameters
such as the scaling factor F , the crossover rate CR and the
population size N , and by mutation strategies such as the rand
strategy and the best strategy. Many researchers have been
studying on controlling the parameters and the strategies.

The methods of controlling algorithm parameters can be
classified into some categories as follows:

(1) selection-based control: Strategies and parameter values
are selected regardless of current search state. CoDE (compos-
ite DE) [5] generates three trial vectors using three strategies
with randomly selected parameter values from parameter can-
didate sets and the best trial vector will head to the survivor
selection.

(2) observation-based control: The current search state is
observed, proper parameter values are inferred according to the
observation, and parameters and/or strategies are dynamically
controlled. FADE (Fuzzy Adaptive DE) [6] observes the
movement of search points and the change of function values
between successive generations, and controls F and CR.
DESFC (DE with Speciation and Fuzzy Clustering) [7] adopts
fuzzy clustering, observes partition entropy of search points,
and controls CR and the mutation strategies between the
rand and the species-best strategy. LMDE (DE with detecting
Landscape Modality) [8] detects the landscape modality such
as unimodal or multimodal using the change of the objective
values at sampling points which are equally spaced along a
line. If the landscape is unimodal, greedy parameter settings
for local search are selected. Otherwise, parameter settings for
global search are selected.

(3) success-based control: It is recognized as a success
case when a better search point than the parent is generated.
The parameters and/or strategies are adjusted so that the
values in the success cases are frequently used. It is thought
that the self-adaptation, where parameters are contained in
individuals and are evolved by applying evolutionary operators

to the parameters, is included in this category. DESAP (DE
with Self-Adapting Populations) [9] controls F,CR and N
self-adaptively. SaDE (Self-adaptive DE) [10] controls the
selection probability of the mutation strategies according to
the success rates and controls the mean value of CR for each
strategy according to the mean value in success case. jDE
(self-adaptive DE algorithm) [11] controls F and CR self-
adaptively. JADE (adaptive DE with optional external archive)
[4] and MDE pBX (modified DE with p-best crossover) [12]
control the mean or power mean values of F and CR accord-
ing to the mean values in success cases. CADE (Correlation-
based Adaptive DE) [13] introduces the correlation of F and
CR to JADE.

In the category (1), useful knowledge to improve the search
efficiency is ignored. In the category (2), it is difficult to
select proper type of observation which is independent of the
optimization problem and its scale. In the category (3), when
a new good search point is found near the parent, parameters
are adjusted to the direction of convergence. In problems with
ridge landscape or multimodal landscape, where good search
points exist in small region, parameters are tuned for small
success and big success will be missed. Thus, search process
would be trapped at a local optimal solution.

In this study, we propose to improve JADE in the category
(3) by introducing CBX. It is thought that CBX is a kind of
observation-based control in the category (2) because CBX
modifies BX by observing the correlation coefficients. Thus,
the proposed method is a hybrid method of the category
(2) and (3). It is expected that CBX improves efficiency in
problems with ridge landscape.

CBX is partly similar to CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) [14] because CMA-ES uses
a covariance matrix and CBX uses a correlation matrix.

B. Linkage Identification

Identifying the dependency among variables is called link-
age identification, and is very important issue in search pro-
cess. There are some studies for linkage identification: In
[15], LINC(Linkage Identification by Nonlinearity Check) is
proposed for genetic algorithm. In [16], learning of linkage
matrix, of which elements indicate the strength of the linkage
between the i-th variable and the j-th variables is proposed for
particle swarm optimization. In [17], learning of linkage ma-
trix, which is different from [16], is proposed for differential
evolution.

LINC is explained because these studies adopted a similar
idea. In order to obtain the strength of linkage between the i-
th variable and the j-th variable, the change of function value
when only the i-th variable is perturbed △fi, that when only
the j-th variable is perturbed △fj and that when both variables
are perturbed △fij(i < j) are obtained as follows:

△fi = f(· · · , x′
i, · · · , xj , · · ·)− f(· · · , xi, · · · , xj , · · ·) (1)

△fj = f(· · · , xi, · · · , x′
j , · · ·)− f(· · · , xi, · · · , xj , · · ·) (2)

△fij = f(· · · , x′
i, · · · , x′

j , · · ·)− f(· · · , xi, · · · , xj , · · ·) (3)

If the i-th variable and the j-th variable are independent, the
following is satisfied.

△fij = △fi +△fj (4)

Conversely, if this condition is not satisfied, it is thought
that there is a linkage between the i-th variable and the j-
th variable. The strength of the linkage eij can be defined as
follows:

eij = |△fij − (△fi +△fj)| (5)

LINC needs D+1 function evaluations (FEs) for calculating
Eq.(1) and Eq.(2), 1

2D(D−1) FEs for calculating Eq.(3), and
1
2D(D + 1) + 1=O(D2) FEs in total. If the computing cost
of the objective function is high, it is very difficult to identify
the linkage many times. However, there are many problems
of which landscape is very different in macroscopic view and
microscopic view. In such case, it is difficult to use this type
of linkage identification.

On the other hand, a correlation matrix is used in this study
and does not require extra function evaluations. Therefore, the
proposed method can be applied to such problems.

III. OPTIMIZATION BY DIFFERENTIAL EVOLUTION

A. Optimization Problems

In this study, the following optimization problem with lower
bound and upper bound constraints will be discussed.

minimize f(x)
subject to lj ≤ xj ≤ uj , j = 1, . . . , D,

(6)

where x = (x1, x2, · · · , xD) is a D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values lj and uj are the lower bound and
the upper bound of xj , respectively. The search space is the
region that satisfies the lower and upper bound constraints.

B. Differential Evolution

In DE, initial individuals are randomly generated within
given search space and form an initial population of size
N . Each individual xi, i = 1, 2, · · · , N contains D genes
as decision variables. At each generation, all individuals are
selected as parents. Each parent is processed as follows: The
mutation operation begins by choosing several individuals
from the population except for the parent in the processing.
The first individual is a base vector. All subsequent individ-
uals are paired to create difference vectors. The difference
vectors are scaled by a scaling factor F and added to the
base vector. The resulting vector, or a mutant vector, is then
recombined with the parent. The probability of recombination
at an element is controlled by a crossover rate CR. This
crossover operation produces a child, or a trial vector. Finally,
for survivor selection, the trial vector is accepted for the next
generation if the trial vector is better than the parent.

There are some variants of DE that have been proposed. The
variants are classified using the notation DE/base/num/cross
such as DE/rand/1/bin and DE/rand/1/exp.

“base” specifies a way of selecting an individual that
will form the base vector. For example, DE/rand selects an
individual for the base vector at random from the population.
DE/best selects the best individual in the population.

“num” specifies the number of difference vectors used to
perturb the base vector. In case of DE/rand/1, for example, for
each parent xi, three individuals xp1, xp2 and xp3 are chosen
randomly from the population without overlapping xi and each
other. A new vector, or a mutant vector mi is generated by the
base vector xp1 and the difference vector xp2 − xp3, where
F is the scaling factor.

mi = xp1 + F (xp2 − xp3) (7)

“cross” specifies the type of crossover that is used to create
a child. For example, ‘bin’ indicates that the crossover is con-
trolled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing
the crossover rate.

A child, or a trial vector xchild
i is generated by the binomial

crossover as follows:

xchild
ij =

{
mij , if u(0, 1) < CR or j = jrand
xij , otherwise (8)

where CR is a crossover rate, u(0, 1) is a uniform random
number generator in [0, 1], and jrand is a random integer in
[1, D].

C. JADE

In JADE, the mean value of the scaling factor µF and
the mean value of the crossover rate µCR are learned to
define two probability density functions, where initial values
are µF =µCR=0.5. The scaling factor Fi and the crossover
rate CRi for each individual xi are independently generated
according to the two functions as follows:

Fi ∼ C(µF , σF) (9)
CRi ∼ N(µCR, σ

2
CR) (10)

where Fi is a random variable according to a Cauchy distri-
bution C(µF , σF) with a location parameter µF and a scale
parameter σF =0.1. CRi is a random variable according to
a normal distribution N(µCR, σ

2
CR) of a mean µCR and a

standard deviation σCR=0.1. CRi is truncated to [0, 1] and Fi

is truncated to be 1 if Fi > 1 or regenerated if Fi ≤ 0. The
location µF and the mean µCR are updated as follows:

µF = (1− c)µF + cSF 2/SF (11)
µCR = (1− c)µCR + cSCR/SN (12)

where SN is the number of success cases, SF , SF 2 and SCR

are the sum of F , F 2 and CR in success cases, respectively. A
constant c is a weight of update in (0,1] and the recommended
value is 0.1.

JADE adopts a strategy called “current-to-pbest” where
an intermediate point between a parent xi and a randomly
selected point from top individuals is used as a base vector.

A mutation vector is generated by current-to-pbest without
archive as follows:

mi = xi + Fi(xpbest − xi) + Fi(xr2 − xr3) (13)

where xpbest is a randomly selected individual from the top
100p% individuals.

In order to satisfy bound constraints, a child that is outside
of the search space is moved into the inside of the search
space. In JADE, each outside element of the child is set to
be the middle between the corresponding boundary and the
element of the parent as follows:

xchild
ij =

{
1
2
(lj + xij) (xchild

ij < lj)
1
2
(uj + xij) (xchild

ij > uj)
(14)

This operation is applied when a new point is generated by
JADE operations.

IV. PROPOSED METHOD

A. Correlating Binomial Crossover (CBX)

In the usual binomial crossover, the probability that genes
of the mutant vector are inherited to the child is specified
by the crossover probability CR. All genes are inherited to
the child with the same probability. However, in problems
where dependency between variables is strong, it is difficult
to generate a good child unless genes with high dependency
are inherited simultaneously. Therefore, in this study, we
propose a new crossover CBX that can inherit genes with large
correlation coefficients simultaneously based on the correlation
coefficients between variables.

A correlation coefficient is an index for measuring the corre-
lation between two variables. A correlation matrix is defined
by extending this to multiple variables and is composed of
the correlation coefficients. Let a population be denoted by
{xi|xi = (xij), j = 1, 2, · · · , D, i = 1, 2, · · · , N}, where
D is the dimension of the problem and N is the number of
individuals. The correlation matrix R = (rkj), where rkj is
the correlation coefficient between the k-th variable (xk) and
the j-th variable (xj), can be defined as follows:

rkj =
1
N

∑N
i=1(xik − x̄k)(xij − x̄j)

σkσj
(15)

σj =

√√√√ 1

N

N∑
i=1

(xij − x̄j)2, x̄j =
1

N

N∑
i=1

xij (16)

If the correlation coefficient is 1, there is strong positive
correlation. If the correlation coefficient is −1, there is strong
negative correlation. From the viewpoint of gene inheritance,
it is thought that there is strong dependency in both cases.
Therefore, the absolute value of the correlation coefficient is
used for measuring the strength of the dependency as follows:

ρkj = |rkj | (17)

CBX(jrand, x, m)

{
k0=−1; // index of the non-crossed gene

k1=jrand; // index of the crossed gene

j=jrand%D + 1;

for(l=1; l ≤ D; l++) {
if(j == jrand) cross=1;

else if(ρk1,j > ρ̄ + Srσρ) cross=1;

else if(k0!=−1 && ρk0,j > ρ̄ + Srσρ) cross=0;

else if(u(0, 1) < CRi) cross=1; else cross=0;

if(cross) { xchild
j =mj; k1=j; }

else { xchild
j =xj; k0=j; }

j=j%D+1;

}
return xchild;

}

Fig. 2. The algorithm of CBX

In this study, the average of ρkj , or ρ̄ and standard deviation
of ρkj , or σρ are used to judge whether the dependency is
strong or not.

ρ̄ =
2

D(D − 1)

D∑
k=1

∑
j<k

ρkj (18)

σρ =

√√√√ 2

D(D − 1)

D∑
k=1

∑
j<k

(ρkj − ρ̄)2 (19)

A new algorithm parameter Sr is introduced for the judgment.
If the following condition is satisfied, it is judged that the
dependency is strong:

ρkj > ρ̄+ Srσρ (20)

The algorithm of CBX is shown in Fig.2. jrand is a
randomly selected position where the gene is crossed, that is,
inherited from the mutant vector unconditionally. The crossed
position k1 where a gene was inherited and the non-crossed
position k0 where a gene was not inherited are stored. Each
j-th gene is checked from the next position of jrand to jrand.
If the condition ρk1,j > ρ̄+Srσρ is satisfied, the dependency
between the crossed gene and the j-th gene is strong and the
j-th gene is inherited from the mutant vector mi to the child.
If the condition ρk0,j > ρ̄+Srσρ is satisfied, the dependency
between the non-crossed gene and the j-th gene is strong and
the j-th gene is not inherited from mi but from the parent
xi. Otherwise, the gene is inherited with the probability of
crossover rate CR.

It is thought that proper means µF and µCR for CBX and
for BX are different. Thus, the means for CBX and the means
for BX is separately learned by JADE method. µk

F and µk
CR

are introduced where k=1 for CBX and k=0 for BX, which
are similar to the group learning in [18].

B. Adaptive Control of the Rate of CBX

In CBX, the diversity of the search points tends to be lost
rapidly. In this study, the probability of applying CBX is
adaptively controlled. Let the probability of CBX be denoted
by RCBX . The initial value of RCBX is 0.5 and the range of

RCBX is in [0.05,0.95] in order to give opportunities to both
of CBX and BX. Success cases, where the child is better than
the parent, are observed. The success rate of CBX (s1) and
that of BX (s0) are compared. if s1 is greater than s0, RCBX

is increased. In the opposite case, RCBX is decreased.

C. Algorithm

The algorithm of the proposed method ADECBX (Adaptive
DE with CBX) can be described as follows:

Step 0 Parameter setup. The mean values of scaling fac-
tor µk

F =0.5 and the mean values of crossover rate
µk
CR=0.5, k = 0, 1, where k = 0 for BX and

k = 1 for CBX. The scale parameter σF =0.1 and
the standard deviation σCR=0.1. The probability of
using CBX RCBX=0.5.

Step 1 Initialization of the individuals. N individuals
{xi|i = 1, 2, · · · , N} are generated randomly in the
search space and form an initial population.

Step 2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uations FEmax, the algorithm is terminated.

Step 3 Initialization for each generation. The list of success
cases Sk is made empty (k = 0, 1). The number of
trials for BX and CBX, or mk is initialized (k =
0, 1).

Step 4 DE operation with adaptive parameters. CBX or
BX is selected according to RCBX . K is set to
0 in case of BX and is set to 1 in case of CBX.
mK is incremented by 1. The scaling factor Fi

is generated according to Cauchy distribution using
µK
F . The crossover rate CRi is generated according

to the normal distribution using µK
CR. CBX or BX is

applied and a new child is generated.
Step 5 Survivor selection. If the child is better than the

parent, the operation is treated as a success case and
the child becomes a survivor. The successful pair of
parameter values (Fi, CRi) is added to success cases
SK . Otherwise, the parent xi becomes a survivor. Go
back to Step 4 until all individuals are processed.

Step 6 Learning of parameters. The means of the scaling
factor µk

F and the means of crossover rate µk
CR are

updated using Sk (k = 0, 1) according to Eqs. (11)
and (12). Success rates of CBX and BX are obtained
as |Sk|/mk, where | · | is the number of elements.
When the success rate of CBX is greater than that of
BX, RCBX is increased. In the opposite case, RCBX

is decreased.
Step 7 Go back to Step 2.

Fig. 3 shows the pseudo-code of the proposed method.

V. NUMERICAL EXPERIMENTS

In this paper, 13 well-known benchmark problems are
solved.

JADE/current-to-pbest/1/adaptive CBX+BX()

{
+ µk

F =µ
k
CR=0.5, k=0,1;

σF = σCR=0.1;

+ RCBX=0.5; △R=0.01;

// Initialize a population

P=N individuals generated randomly in the search space;

FE=N;

for(t=1; FE < FEmax; t++) {
+ (rkj)=Correlation matrix of P is obtained by Eq.(15);

+ (ρkj) is obtained by Eq.(17);

+ ρ̄ and σρ are obtained by Eqs.(18) and (19);

+ Sk=∅, k=0,1;

+ mk=0, k=0,1; // number of trials for BX and CBX

for(i=1; i ≤ N; i++) {
+ if(u(0, 1) < RCBX) K=1; // CBX

+ else K=0; // BX

+ mK++;

+ CRi = µK
CR + N(0, σ2

CR);

if(CRi < 0) CRi=0;

else if(CRi > 1) CRi=1;

do {
+ Fi=µ

K
F + C(0, σF);

} while(Fi ≤ 0);

if(Fi > 1) Fi = 1;

xpbest = Randomly selected from top 100p% in P;

xr1 = Randomly selected from P(r1 ̸∈ {i});
xr2 = Randomly selected from P(r2 ̸∈ {i, r1});
mi = xi+Fi(xpbest − xi)+Fi(xr1 − xr2);

jrand=randint(1,D);

+ if(K==1)

// correlating binomial crossover

+ xchild
i =CBX(jrand, xi, mi);

+ else

// binomial crossover

xchild
i =binomial crossover between xi and mi;

// Survivor selection

if(f(xchild
i) < f(xi)) {

zi = xchild
i ;

SK = SK ∪ {(Fi, CRi)}; // a success case is added

}
else zi = xi;

FE++;

}
P = {zi};

+ for(k=0; k < 2; k++)

+ if(|Sk| > 0) {
+ µk

F = (1 − c)µk
F + c

∑
Fi∈Sk F 2

i /
∑

Fi∈Sk Fi;

+ µk
CR = (1 − c)µk

CR + c
∑

CRi∈Sk CRi/|Sk|;
+ }
+ if(m0 > 0 && m1 > 0) {
+ s0 = |S0|/m0; // success rate of BX

+ s1 = |S1|/m1; // success rate of CBX

+ if(s1 > s0)

+ RCBX = RCBX + △R;

+ else if(s0 > s1)

+ RCBX = RCBX − △R;

+ if(RCBX > 0.95) RCBX=0.95;

+ else if(RCBX < 0.05) RCBX=0.05;

+ }
}

}

Fig. 3. The algorithm of proposed method

A. Test Problems and Experimental Conditions

The 13 scalable benchmark functions are shown in Table
I [4]. Every function has an optimal objective value 0. Some
characteristics are briefly summarized as follows: Functions
f1 to f4 are continuous unimodal functions. The function
f5 is Rosenbrock function which is unimodal for 2- and 3-
dimensions but may have multiple minima in high dimension
cases [19]. The function f6 is a discontinuous step function,
and f7 is a noisy quartic function. Functions f8 to f13 are
multimodal functions and the number of their local minima
increases exponentially with the problem dimension [20].

TABLE I
TEST FUNCTIONS OF DIMENSION D. THESE ARE SPHERE, SCHWEFEL
2.22, SCHWEFEL 1.2, SCHWEFEL 2.21, ROSENBROCK, STEP, NOISY

QUARTIC, SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK, AND TWO
PENALIZED FUNCTIONS, RESPECTIVELY.

Test functions Bound constraints
f1(x) =

∑D
i=1 x

2
i [−100, 100]D

f2(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i
j=1 xj

)2
[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1⌊xi + 0.5⌋2 [−100, 100]D

f7(x) =
∑D

i=1 ix
4
i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1 −xi sin
√

|xi|
+D · 418.98288727243369

[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D
[10 sin2(πy1) +

∑D−1
i=1 (yi − 1)2

{1+ 10 sin2(πyi+1)}+(yD − 1)2]
+
∑D

i=1 u(xi, 10, 100, 4)
where yi = 1+ 1

4
(xi +1) and u(xi, a, k,m) = k(xi − a)m xi > a

0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1) +
∑D−1

i=1 (xi − 1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}] +
∑D

i=1 u(xi, 5, 100, 4)

[−50, 50]D

Experimental conditions are same as JADE as follows: Pop-
ulation size N = 100, initial mean for scaling factor µF = 0.5
and initial mean for crossover rate µCR = 0.5, the pbest
parameter p=0.05, and the learning parameter c=0.1. Sr are
selected from {0.0, 0.3, 0.6, 1} and △R=0.01 for ADECBX.

50 independent runs are performed for 13 problems. The
number of dimensions for the problems is 30 (D=30). Each
run stops when the number of function evaluations exceeds the
maximum number of evaluations FEmax. In each function,
different FEmax is adopted.

B. Experimental Results

Table II shows the experimental results on JADE and
ADECBX in case of Sr=0, 0.3, 0.6 and 1. The results of
JADE can be obtained by ADECBX with fixing RCBX=0.

The mean value and the standard deviation of best objective
values in 50 runs are shown for each function. The maximum
number of function evaluations is selected for each function
and is shown in column labeled FEmax. The best result
among algorithms is highlighted using bold face fonts. Also,
Wilcoxon signed rank test [21] is performed and the result
for each function is shown under the mean value. Symbols
‘+’, ‘−’ and ‘=’ are shown when ADECBX is significantly
better than JADE, is significantly worse than JADE, and is not
significantly different from JADE, respectively. Note that the
symbols ‘+’ and ‘−’ denote that the significance level is 5%
and the symbols ‘++’ and ‘−−’ denote that the significance
level is 1%.

ADECBX (Sr=0.6) attained significantly better results than
JADE in 11 functions except for f4 and f7. ADECBX (Sr=0
and 0.3) attained significantly better results than JADE in 10
functions except for f4, f7 and f11. ADECBX (Sr=1) attained
significantly better results than JADE in 9 functions except for
f4, f7, f11 and f13. JADE attained significantly better results
than ADECBX (Sr=0, 0.3) in one function f7 and ADECBX
(Sr=0.6, 1) in no function.

Also, ADECBX (Sr=0) attained best mean results in 6
functions f1, f2, f6, f9, f10 and f13 out of 13 functions.
ADECBX (Sr=0.6) attained best mean results in 2 functions
f5 and f11. ADECBX (Sr=1) attained best mean results in
2 functions f3 and f8. JADE attained best mean results in
2 functions f4 and f7. ADECBX (Sr=0.3) attained the best
mean result in f12. The average ranks of best mean results are
2.50 (Sr=0.3), 2.69 (Sr=0.6), 2.88 (Sr=0), 3.27 (Sr=1) and
3.65 (JADE).

Thus, it is thought that ADECBX (Sr=0.6) is the best one
among 4 methods.

VI. CONCLUSIONS

We proposed a new crossover CBX which uses correlation
coefficients of search points in order to identify dependency
among decision variables and solve problems with strong
dependency. The crossover points are decided so that highly
correlated variables are inherited at the same time. Also,
adaptive control of the probability of applying CBX is pro-
posed. From numerical experiments, it is shown that ADECBX
(Sr=0.6) attained significantly better results compared with
JADE in many problems.

In this paper, all search points are used to obtain the
correlation matrix. If some good search points are used for
the matrix, it is expected that the identification of dependency
may become more accurate. Also, a method that groups of
variables are extracted based on correlation coefficients and
the groups are used for the binomial crossover operation will
be considered. It is expected that CBX can be introduced into
various DE variants other than JADE in order to improve the
performance.

ACKNOWLEDGMENT

This study is supported by JSPS KAKENHI Grant Numbers
26350443 and 17K00311.

TABLE II
EXPERIMENTAL RESULTS

FEmax JADE ADECBX (Sr = 0) ADECBX (Sr = 0.3) ADECBX (Sr = 0.6) ADECBX (Sr = 1)
f1 150,000 1.40e-59 ± 9.74e-59 2.97e-67 ± 1.50e-66 7.77e-66 ± 4.40e-65 4.81e-64 ± 3.17e-63 1.57e-63 ± 6.67e-63

++ ++ ++ ++
f2 200,000 6.81e-25 ± 4.71e-24 4.07e-45 ± 1.59e-44 6.35e-43 ± 2.26e-42 3.75e-41 ± 1.99e-40 8.26e-36 ± 5.66e-35

++ ++ ++ ++
f3 500,000 1.59e-62 ± 5.33e-62 8.81e-73 ± 2.95e-72 4.73e-79 ± 2.55e-78 1.64e-82 ± 1.14e-81 6.91e-86 ± 2.87e-85

++ ++ ++ ++
f4 500,000 9.43e-24 ± 2.71e-23 4.27e-23 ± 2.25e-22 9.57e-24 ± 3.80e-23 1.99e-23 ± 6.83e-23 2.41e-23 ± 7.65e-23

= = = =
f5 150,000 3.19e-01 ± 1.08e+00 5.58e-01 ± 1.38e+00 1.59e-01 ± 7.81e-01 7.01e-22 ± 4.90e-21 2.39e-01 ± 9.47e-01

++ ++ ++ ++
f6 10,000 3.06e+00 ± 1.05e+00 7.40e-01 ± 8.90e-01 1.14e+00 ± 8.00e-01 2.04e+00 ± 1.02e+00 2.50e+00 ± 1.06e+00

++ ++ ++ ++
f7 300,000 6.36e-04 ± 3.08e-04 7.92e-04 ± 3.22e-04 7.39e-04 ± 2.69e-04 7.16e-04 ± 2.88e-04 7.18e-04 ± 3.35e-04

− − = =
f8 100,000 2.37e+00 ± 1.66e+01 2.37e+00 ± 1.66e+01 4.74e+00 ± 2.32e+01 4.74e+00 ± 2.32e+01 1.13e-08 ± 3.19e-08

++ ++ ++ ++
f9 100,000 9.96e-05 ± 5.06e-05 2.93e-09 ± 8.59e-09 2.03e-08 ± 4.07e-08 7.81e-07 ± 3.34e-06 4.67e-06 ± 8.55e-06

++ ++ ++ ++
f10 50,000 9.90e-10 ± 7.21e-10 7.10e-11 ± 3.44e-11 1.54e-10 ± 1.02e-10 3.33e-10 ± 3.52e-10 5.19e-10 ± 3.88e-10

++ ++ ++ ++
f11 50,000 4.19e-11 ± 2.89e-10 5.43e-04 ± 2.17e-03 4.44e-04 ± 2.19e-03 2.55e-16 ± 1.59e-15 1.03e-07 ± 7.19e-07

= = + =
f12 50,000 1.57e-17 ± 4.10e-17 4.15e-03 ± 2.03e-02 1.85e-19 ± 5.64e-19 2.07e-03 ± 1.45e-02 2.07e-03 ± 1.45e-02

++ ++ ++ ++
f13 50,000 1.83e-16 ± 5.82e-16 7.62e-20 ± 9.70e-20 1.37e-18 ± 4.56e-18 3.70e-18 ± 6.18e-18 1.89e-17 ± 7.29e-17

++ ++ ++ =
+ — 10 10 11 9
= — 2 2 2 4
− — 1 1 0 0

REFERENCES

[1] R. Storn and K. Price, “Differential evolution – A simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[2] U. K. Chakraborty, Ed., Advances in Differential Evolution. Springer,
2008.

[3] S. Das and P. Suganthan, “Differential evolution: A survey of the state-
of-the-art,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 4–31, Feb. 2011.

[4] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, Oct. 2009.

[5] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite
trial vector generation strategies and control parameters,” IEEE Trans-
actions on Evolutionary Computation, vol. 15, no. 1, pp. 55–66, Feb.
2011.

[6] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algo-
rithm,” Soft Computing, vol. 9, no. 6, pp. 448–462, 2005.

[7] T. Takahama and S. Sakai, “Fuzzy c-means clustering and partition
entropy for species-best strategy and search mode selection in nonlinear
optimization by differential evolution,” in Proc. of the 2011 IEEE
International Conference on Fuzzy Systems, Jun. 2011, pp. 290–297.

[8] T. Takahama and S. Sakai, “Differential evolution with dynamic strategy
and parameter selection by detecting landscape modality,” in Proc. of
the 2012 IEEE Congress on Evolutionary Computation, Jun. 2012, pp.
2114–2121.

[9] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Computing, vol. 10, no. 8, pp. 673–686, Jun. 2006.

[10] A. Qin, V. Huang, and P. Suganthan, “Differential evolution algorithm
with strategy adaptation for global numerical optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, Apr.
2009.

[11] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative

study on numerical benchmark problems,” IEEE Transaction on Evo-
lutionary Computation, vol. 10, no. 6, pp. 646–657, Dec. 2006.

[12] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive
differential evolution algorithm with novel mutation and crossover
strategies for global numerical optimization,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 2,
pp. 482–500, Apr. 2012.

[13] T. Takahama and S. Sakai, “An adaptive differential evolution consid-
ering correlation of two algorithm parameters,” in Proc. of the Joint
7th International Conference on Soft Computing and Intelligent Systems
and 15th International Symposium on Advanced Intelligent Systems
(SCIS&ISIS2014), Dec. 2014, pp. 618–623.

[14] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[15] M. Munetomo and D. E. Goldberg, “A genetic algorithm using linkage
identification by nonlinearity check,” in Proc. of the 1999 IEEE Inter-
national Conference on Systems, Man, and Cybernetics, vol. 1, 1999,
pp. 595–600.

[16] D. Devicharan and C. K. Mohan, “Particle swarm optimization with
adaptive linkage learning,” in Proceedings of the 2004 Congress on
Evolutionary Computation, vol. 1, June 2004, pp. 530–535.

[17] Y. Cai and J. Wang, “Differential evolution with hybrid linkage
crossover,” Information Sciences, vol. 320, pp. 244–287, Nov. 2015.

[18] T. Takahama and S. Sakai, “An adaptive differential evolution with
learning parameters according to groups defined by the rank of objective
values,” in Proc. of the Eighth International Conference on Swarm
Intelligence (ICSI2017), Jul. 2017, pp. 411–419.

[19] Y.-W. Shang and Y.-H. Qiu, “A note on the extended Rosenbrock
function,” Evolutionary Computation, vol. 14, no. 1, pp. 119–126, Apr.
2006.

[20] X. Yao, Y. Liu, , and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary Computation, vol. 3, pp. 82–102,
Jul. 1999.

[21] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

