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Abstract— Differential Evolution (DE) is a newly proposed
evolutionary algorithm. DE is a stochastic direct search method
using a population or multiple search points. DE has been
successfully applied to optimization problems including non-
linear, non-differentiable, non-convex and multimodal functions.
However, the performance of DE degrades in problems having
strong dependence among variables, where variables are related
strongly to each other. In this study, we propose to utilize partition
entropy given by fuzzy clustering for solving the degradation.
It is thought that a directional search is desirable when search
points are distributed with bias. Thus, when the entropy is low,
algorithm parameters can be controlled to make the directional
search. Also, we propose to use a species-best strategy for
improving the efficiency and the robustness of DE. The effect
of the proposed method is shown by solving some benchmark
problems.

Index Terms—differential evolution; rotation-invariant; inten-
sive search; extensive search

I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs). Differential
evolution (DE) is a newly proposed EA by Storn and Price
[1]. DE is a stochastic direct search method using a population
or multiple search points. DE has been successfully applied to
optimization problems including non-linear, non-differentiable,
non-convex and multimodal functions [2], [3]. It has been
shown that DE is a very fast and robust algorithm.

However, the performance of DE degrades in problems
having strong dependence among variables, where variables
are related strongly to each other. It is very important to know
the distribution of search points to solve the degradation. For
example, when search points are uniformly distributed as in the
left part of Fig. 1, a nondirectional search is the better choice
than a directional search. On the contrary, when variables are
strongly related as in the right part of the figure, a directional
search is the better choice.

In this study, in order to know the distribution, we propose
to utilize partition entropy given by fuzzy clustering. If the

entropy is very high, search points are often uniformly dis-
tributed. If the entropy is low, search points are distributed with
a bias. Thus, when the entropy is low, algorithm parameters
can be controlled to make the directional search. It is thought
that this idea can be applicable to other EAs than DE.

Also, we propose to use a species-best strategy [4] for
improving the efficiency and the robustness of DE. In DE, a
mutant vector is generated for each parent by using a base
vector and one or more difference vectors which are the
difference between two individuals. The parent and the mutant
vector are recombined by a crossover operation to generate a
child, or a trial vector. There are some strategies for selecting
the base vector: The best individual is used as the base vector
in the best strategy and a randomly selected individual is used
in the rand strategy. In the species-best strategy, a population
is divided into several species by speciation, and the seed of
the species to which the parent belongs is selected as the
base vector. It is thought that the efficiency of the species-best
strategy is better than the rand strategy and the robustness of
the species-best strategy is better than the best strategy. Thus,
it is expected that the strategy improves the efficiency and the
robustness of the search.

The effect of the proposed method is shown by solving
13 benchmark problems including multimodal problems and
problems with strong dependence.

In Section II, some studies on DE using fuzzy set theory
or speciation are briefly reviewed. Fuzzy clustering and par-

Fig. 1. Uniform Search (left) and Directional Search (right)
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tition entropy are explained in Section III. DE and DE with
speciation using fuzzy clustering are described in Section IV
and V, respectively. In Section VI, experimental results on
some problems are shown. Finally, conclusions are described
in Section VII.

II. PREVIOUS WORKS

In this section, the optimization problem in this study is
defined and some studies on DE using fuzzy set theory or
speciation are described.

A. Optimization Problems

In this study, the following optimization problem with lower
bound and upper bound constraints will be discussed.

minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.

B. Fuzzy Set Theory

There exist some studies on optimization by DE using fuzzy
set theory.

• Fuzzy logic: Fuzzy logic is used to control the parameters
of DE. The fuzzy adaptive differential evolution (FADE)
[5] is proposed to control parameters for a mutation
operation and a crossover operation. In each generation,
the movement of individuals (vectors) and the change of
function values over the whole population between the
last two generations were nonlinearly depressed and used
as the inputs for fuzzy logic controllers.

• Fuzzy clustering: The hybrid DE based on fuzzy c-means
clustering (FCDE) [6] is proposed, which uses the one-
step fuzzy c-means clustering. The clustering acts as a
multi-parent crossover operation to utilize the information
of a population efficiently. In [7], fuzzy clustering
is used to divide a population into several clusters or
niches, which are a kind of species described below, for
multimodal optimization.

C. Speciation

Speciation is mainly used for multimodal optimization
where multiple optimal or suboptimal solutions are obtained
simultaneously in one run. Each species evolves to find an
optimal or suboptimal solution. There exist some types of
research using speciation in DE [8].

• Radius-based speciation: In this category, a population is
sorted in increasing objective value order, first. Then, the
best individual in the sorted population becomes a new
species seed. The population members that exist within
the specified radius from the seed are assigned to the
species, and the members are deleted from the population.

This process is repeated until the population becomes
empty [4], [9], [10].

• Clustering-based speciation
A population is divided into several clusters using a
clustering algorithm such as k-means clustering [11] or
fuzzy c-means clustering [7]. Each cluster corresponds
to a species. If the seed of a species is necessary, an
individual that has the best objective value in the species
is selected as the seed.

In this study, the clustering-based speciation using fuzzy c-
means clustering is used not to multimodal optimization but
to usual optimization for finding one optimal solution and
improving the efficiency of DE using the species-best strategy.
Also, as a quite new approach, the partition entropy obtained
by the clustering is used to control the parameter for crossover
operation of DE.

III. FUZZY C-MEANS CLUSTERING AND ENTROPY

In this section, fuzzy c-means clustering and partition
entropy are briefly explained [7], [12].

A. Fuzzy Partition and Partition Entropy

Fuzzy partition allows a data point to belong to two or more
clusters. Let X = {x1,x2, · · · ,xN} be a set of N data points.
A fuzzy partition of X into C clusters can be defined with a
matrix U = {µij}, 1 ≤ i ≤ N, 1 ≤ j ≤ C, which satisfies the
following conditions:

µij ∈ [0, 1] (2)
C∑

j=1

µij = 1, 1 ≤ i ≤ N (3)

0 <
N∑
i=1

µij < N, 1 ≤ j ≤ C (4)

where µij is the degree of membership of the i-th data xi

in the j-th cluster. The higher µij indicates that the i-th data
belongs to the j-th cluster more strongly.

Some evaluation criteria for the fuzzy partition are proposed
such as partition entropy and so on. The normalized partition
entropy is defined as follows:

PE(C) = − 1

N log2 C

N∑
i=1

C∑
j=1

µij log2 µij (5)

where 0 ≤ PE(C) ≤ 1. The minimum value 0 corresponds
to a hard partition, where each data point xi belongs to only
a cluster ci:

µij =

{
1 j = ci
0 j 6= ci

, 1 ≤ i ≤ N (6)

The maximum value 1 corresponds to the fuzziest partition,
where each data point belongs to all clusters equivalently:

µij =
1

C
, 1 ≤ i ≤ N, 1 ≤ j ≤ C (7)

In this study, the entropy is used to detect the distribution
of search points and alter the mode of the search by DE.
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B. Fuzzy C-Means Clustering

Fuzzy C-Means (FCM) is a clustering method which re-
alizes the fuzzy partition. This method is frequently used
in pattern recognition. The FCM algorithm minimizes the
following function:

Jm(U, V ) =

N∑
i=1

C∑
j=1

(µij)
m||xi − vj ||2, 1 ≤ m <∞ (8)

where m is a real number parameter specifying degree of fuzzi-
ness, vj is the center of the j-th cluster, V = {v1,v2, · · · ,vC}
is a set of the cluster centers, and || · || represents any norm
expressing the distance between a data point and the cluster
center.

The FCM algorithm is as follows:
1) Assign membership values µij of all data in all clusters

randomly.
2) Update cluster centers.

vj =

∑N
i=1(µij)

mxi∑N
i=1(µij)m

(9)

3) Update membership degrees.

µij =
1∑C

k=1

(
||xi−vj ||2
||xi−vk||2

) 1
m−1

(10)

4) The algorithm is terminated, when the following condi-
tion is satisfied, or the change of membership degrees
between two iterations is no more than ε, the given
sensitivity threshold.

N∑
i=1

C∑
j=1

(µm
ij (t) − µm

ij (t− 1))2 ≤ ε (11)

where µm
ij (t) and µm

ij (t− 1) are the value at the current
iteration and that at the previous iteration, respectively.

5) Go back to 2).
This algorithm minimizes intra-cluster variance, but the mini-
mum is a local minimum and the results depend on the initial
choice of membership degrees.

IV. DIFFERENTIAL EVOLUTION

In this section, the outline of DE is described.

A. Outline of Differential Evolution

In DE, initial individuals are randomly generated within
the given search space and form an initial population. Each
individual contains D genes as decision variables. At each
generation or iteration, all individuals are selected as parents.
Each parent is processed as follows: The mutation operation
begins by choosing several individuals from the population
except for the parent in the processing. The first individual
is a base vector. All subsequent individuals are paired to
create difference vectors. The difference vectors are scaled by
a scaling factor F and added to the base vector. The resulting
vector, or a mutant vector, is then recombined with the parent.
The probability of recombination at an element is controlled

by a crossover rate CR. This crossover operation produces a
trial vector. Finally, for survivor selection, the trial vector is
accepted for the next generation if the trial vector is better than
the parent.

There are some variants of DE that have been proposed. The
variants are classified using the notation DE/base/num/cross
such as DE/rand/1/bin and DE/rand/1/exp.

“base” specifies a way of selecting an individual that
will form the base vector. For example, DE/rand selects an
individual for the base vector at random from the population.
DE/best selects the best individual in the population.

“num” specifies the number of difference vectors used to
perturb the base vector. In case of DE/rand/1, for example, for
each parent xi, three individuals xp1, xp2 and xp3 are chosen
randomly from the population without overlapping xi and each
other. A new vector, or a mutant vector x′ is generated by the
base vector xp1 and the difference vector xp2−xp3, where F
is the scaling factor.

x′ = xp1 + F (xp2 − xp3) (12)

“cross” specifies the type of crossover that is used to create
a child. For example, ‘bin’ indicates that the crossover is
controlled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing
the crossover rate. Fig. 2 shows the binomial and exponential
crossover. A new child xchild is generated from the parent xi

and the mutant vector x′, where CR is a crossover rate.

binomial crossover DE/·/·/bin
jrand=randint(1,D);
for(k=1; k ≤ D; k++) {
if(k == jrand || u(0, 1) < CR) xchild

k =x′
k;

else xchild
k =xi

k;
}

exponential crossover DE/·/·/exp
k=1; j=randint(1,D);
do {

xchild
j =x′

j;
k=k+1; j=(j + 1)%D;

} while(k ≤ D && u(0, 1) < CR);
while(k ≤ D) {

xchild
j =xi

j;
k=k+1; j=(j + 1)%D;

}

Fig. 2. Binomial and exponential crossover operation, where randint(1,D)
generates an integer randomly from [1, D] and u(l, r) is a uniform random
number generator in [l, r].

B. The Algorithm of Differential Evolution

The algorithm of DE is as follows:
Step1 Initialization of a population. Initial N individuals

P = {xi, i = 1, 2, · · · , N} are generated randomly
in the search space and form an initial population.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uation FEmax, the algorithm is terminated.
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Step3 DE operations. Each individual xi is selected as a
parent. If all individuals are selected, go to Step4. A
mutant vector x′ is generated according to Eq. (12).
A trial vector (child) is generated from the parent xi

and the mutant vector x′ using a crossover operation
shown in Fig. 2. If the child is better than or equal to
the parent, or the DE operation is succeeded, the child
survives. Otherwise the parent survives. Go back to
Step3 and the next individual is selected as a parent.

Step4 Survivor selection (generation change). The popula-
tion is organized by the survivors. Go back to Step2.

Fig. 3 shows a pseudo-code of DE/rand/1.

DE/rand/1()
{
// Initialize a population
P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
for(i=1; i ≤ N; i++) {

// DE operations
xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6∈ {i, p1});
xp3=Randomly selected from P(p3 6∈ {i, p1, p2});
x′=xp1+F (xp2 − xp3);
xchild=trial vector is generated from

xi and x′ by the crossover operation;
// Survivor selection

if
(
f(xchild)≤ f(xi)

)
zi=xchild;

else zi=xi;
FE=FE+1;

}
P={zi, i = 1, 2, · · · , N};

}
}

Fig. 3. The pseudo-code of DE, FE is the number of function evaluations.

V. DE WITH SPECIATION USING FUZZY CLUSTERING

In this section, DE with speciation using fuzzy clustering
(DESFC) is proposed.

A. Species-Best Strategy

The following steps are executed in each generation to
realize the species-best strategy.

1) FCM is applied to a population P = {x1,x2, · · · ,xN}
where N is the population size. The membership grade
of the i-th individual xi in the j-th cluster, µij , 1 ≤ i ≤
N , 1 ≤ j ≤ C is obtained where C is the number of
clusters.

2) Each cluster j corresponds to one species. The i-th
individual is assigned to the cluster or the species Si

where µij has the maximum value.

Si = arg max
1≤j≤C

µij , 1 ≤ i ≤ N (13)

3) The seed of j-th species, seedj is the best individual in
the species.

seedj = arg min
{i|Si=j}

f(xi), 1 ≤ j ≤ C (14)

Thus, the seed for the i-th individual can be obtained as
seedSi .

The species-best strategy to xi can be described as follows:

x′ = xseedSi + F (xp2 − xp3) (15)

where p2 and p3 are random integers in [1, N ] and i, p2 and
p3 are different with each other.

B. Algorithm of DESFC

Fig. 4 shows the pseudo-code of DESFC. Some modifi-
cations to standard DE are applied for proposed method as
follows:

1) The partition entropy PE(C) for {µij} is calculated in
each generation. If the entropy is low, or PE(C) <
0.99, a directional search is desirable. In this study, the
crossover rate is set to 0.95 or 0.1 with equal probability
using the binomial crossover to search for an area near
the parent or the mutant vector. In order to improve the
robustness, the species-best strategy and the rand strategy
are adopted probabilistically.

2) Continuous generation model [13], [14] is adopted. Usu-
ally discrete generation model is adopted in DE and
when the child is better than the parent, the child survives
in the next generation. In this study, when the child is
better than the parent, the parent is immediately replaced
by the child. It is thought that the continuous generation
model improves efficiency because the model can use
newer information than the discrete model.

3) Reflecting back out-of-bound solutions [15] is adopted.
In order to keep bound constraints, an operation to move
a point outside of the search space S into the inside
of S is required. There are some ways to realize the
movement: generating solutions again, cutting off the
solutions on the boundary, and reflecting points back to
the inside of the boundary [16]. In this study, reflecting
back is used:

xij =


li + (li − xij)−

⌊
li−xij

ui−li

⌋
(ui − li) (xij < li)

ui − (xij − ui) +

⌊
xij−ui

ui−li

⌋
(ui − li) (xij > ui)

xij (otherwise)
(16)

where bzc is the maximum integer smaller than or equal
to z. This operation is applied when a new point is
generated by DE operations.

VI. SOLVING OPTIMIZATION PROBLEMS

In this paper, well-known thirteen benchmark problems are
solved.

A. Test Problems and Experimental Conditions

The 13 scalable benchmark functions are shown in Table I
[17]. All functions have an optimal value 0. Some characteris-
tics are briefly summarized as follows: Functions f1 to f4 are
continuous unimodal functions. The function f5 is Rosenbrock
function which is unimodal for 2- and 3-dimensions but may
have multiple minima in high dimension cases [18]. The
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DESFC()

{
// Initialize a population

P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
// Speciation using FCM

{µij}=Fuzzy c-means clustering of P;

for(i=1; i ≤ N; i++)

Si=argmax1≤j≤C µij;

for(j=1; i ≤ C; j++)

seedj=argmin{i|Si=j} f(xi);

// Judge distribution of search points

PE=partition entropy of {µij};
if(PE ≥ 0.99) isUniform=TRUE;

else isUniform=FALSE;

for(i=1; i ≤ N; i++) {
CR=CR0; Select exponential crossover;

if(i! = seedsi && u(0, 1) < 0.6) {
if(isUniform==FALSE) {
if(u(0, 1) < 0.5) CR=0.95;

else CR=0.1;

Select binomial crossover;

}
// DE/species-best/1/{bin,exp}

p1=seedSi
;

}
else

// DE/rand/1/exp

xp1=Randomly selected from P(p1 6= i);

xp2=Randomly selected from P(p2 6∈ {i, p1});
xp3=Randomly selected from P(p3 6∈ {i, p1, p2});
x′=xp1+F (xp2 − xp3 );

xc=trial vector is generated from

xi and x′ by the selected crossover;

FE=FE+1;

// Survivor selection

if
(
f(xc)≤ f(xi)

)
xi=xc;

}
}

}

Fig. 4. The pseudo-code of DESFC where CR0 is an initial crossover rate.

function f6 is a discontinuous step function, and f7 is a noisy
quartic function. Functions f8 to f13 are multimodal functions
and the number of their local minima increases exponentially
with the problem dimension [19].

Independent 30 runs are performed for the 13 problems.
The dimension of problems is 40 (D=40). Each run stops
when a near optimal solution, which has equivalent objective
value to the optimal solution, is found. In this study, when the
difference between the best objective value and the optimal
value becomes less than 10−7, the run stops. In f7, it is difficult
to find the good objective value, because a random noise is
added. It is assumed that the optimal value of f7 is 10−2 in
this experiment.

The efficiency of two algorithms DE/rand (continuous gen-

TABLE I
TEST FUNCTIONS OF DIMENSION D. THESE ARE SPHERE, SCHWEFEL 2.22,

SCHWEFEL 1.2, SCHWEFEL 2.21, ROSENBROCK, STEP, NOISY QUARTIC,
SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK, AND TWO PENALIZED

FUNCTIONS, RESPECTIVELY [20]

Test functions Bound constraints

f1(x) =
∑D

i=1
x2
i [−100, 100]D

f2(x) =
∑D

i=1
|xi|+

∏D

i=1
|xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i

j=1
xj

)2

[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1
bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1
ix4

i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1
−xi sin

√
|xi|

+D · 418.98288727243369
[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D

i=1
x2
i

)
− exp

(
1
D

∑D

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D

i=1
x2
i −
∏D

i=1
cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D
[10 sin2(πy1) +

∑D−1

i=1
(yi − 1)2

{1+ 10 sin2(πyi+1)}+(yD − 1)2]

+
∑D

i=1
u(xi, 10, 100, 4)

where yi = 1+ 1
4
(xi +1) and u(xi, a, k,m) ={

k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1)+
∑D−1

i=1
(xi−1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}] +
∑D

i=1
u(xi, 5, 100, 4)

[−50, 50]D

eration model) and DESFC are compared where the number
of clusters C is changed from 2 to 5 in DESFC. The degree
of fuzziness m is fixed to 2. The parameters are: F = 0.7,
CR = 0.9 and the exponential crossover is adopted as usual
crossover, because these settings showed very good and stable
performance [21]. The population size is twice of the dimen-
sion size, N = 2D = 80. The number of function evaluations
(FEs) until finding a near optimal solution is compared. If the
number of FEs exceeds 2,000,000, the run is terminated and
regarded as a failure run.

B. Experimental Results

Table II shows the experimental results. The mean number
of FEs until finding a near optimal value and their standard
deviation are shown in the top row for each function. Also,
the ratio of the mean number of FEs relative to that of the
standard DE is shown in the bottom row using parentheses.
The best result is highlighted using bold face fonts.

294



TABLE II
EXPERIMENTAL RESULTS. MEAN VALUE ± STANDARD DEVIATION AND RATIO OF THE MEAN VALUE RELATIVE TO THAT OF THE STANDARD DE IN 30 RUNS

ARE SHOWN

DE DESFC (C = 2) DESFC (C = 3) DESFC (C = 4) DESFC (C = 5)
f1 160492.4 ± 1435.2 117206.1 ± 1564.7 120674.8 ± 1831.4 122346.5 ± 1755.9 124235.9 ± 1194.0

(1.000) (0.730) (0.752) (0.762) (0.774)
f2 226925.5 ± 1780.4 170303.5 ± 2038.4 174018.3 ± 2069.4 177648.0 ± 1673.2 179780.8 ± 1981.5

(1.000) (0.750) (0.767) (0.783) (0.792)
f3 1383166.8 ± 17090.3 810832.5 ± 13592.4 838104.6 ± 16195.6 847113.2 ± 13832.2 861445.0 ± 17661.7

(1.000) (0.586) (0.606) (0.612) (0.623)
f4 1435549.4 ± 12435.7 845085.4 ± 12057.4 884353.9 ± 14714.8 907182.5 ± 14305.0 921243.2 ± 13765.9

(1.000) (0.589) (0.616) (0.632) (0.642)
f5 505521.2 ± 6922.3 375997.1 ± 11190.8 417049.6 ± 10243.3 446234.7 ± 9937.2 464278.1 ± 7319.0

(1.000) (0.744) (0.825) (0.883) (0.918)
f6 64055.6 ± 1613.6 47752.3 ± 1296.9 49372.5 ± 1214.7 49977.7 ± 1297.2 50268.7 ± 1612.4

(1.000) (0.745) (0.771) (0.780) (0.785)
f7 798441.2 ± 139293.5 563133.9 ± 107809.7 572408.3 ± 115549.5 553073.6 ± 95603.7 598517.6 ± 92705.4

(1.000) (0.705) (0.717) (0.693) (0.750)
f8 192272.8 ± 2857.9 144776.4 ± 3354.0 148036.9 ± 3334.3 150478.6 ± 2474.9 151358.5 ± 3162.7

(1.000) (0.753) (0.770) (0.783) (0.787)
f9 349435.7 ± 8654.0 282471.5 ± 10327.1 286350.3 ± 6992.8 293521.2 ± 10027.9 292191.9 ± 7366.3

(1.000) (0.808) (0.819) (0.840) (0.836)
f10 239050.7 ± 1933.8 174369.5 ± 2165.9 179843.3 ± 1916.2 183511.6 ± 2097.5 185127.6 ± 1934.2

(1.000) (0.729) (0.752) (0.768) (0.774)
f11 171085.8 ± 5818.7 121418.5 ± 3495.4 127356.7 ± 5213.6 128429.4 ± 5079.4 131122.6 ± 5681.8

(1.000) (0.710) (0.744) (0.751) (0.766)
f12 142630.8 ± 1479.8 106608.6 ± 2220.4 109387.1 ± 2468.9 110834.6 ± 1590.7 112822.2 ± 2121.4

(1.000) (0.747) (0.767) (0.777) (0.791)
f13 153476.0 ± 1643.0 113441.0 ± 1508.6 116932.2 ± 2255.1 118936.9 ± 1966.8 119801.5 ± 1684.0

(1.000) (0.739) (0.762) (0.775) (0.781)

DESFC can solve all problems in all runs successfully.
DESFC outperformed the standard DE in all problems and
in all settings of C. The value C = 2 showed the best results.
DESFC with C = 2 can solve the problems f3 and f4 within
60% FEs compared with the standard DE, solve the problems
f7 and f11 in about 70% FEs, and solve the other problems
in about 75% FEs except for f9 in about 80% FEs.

It is shown that the proposed method can solve 4 problems
very fast and 9 problems fast. Thus, it is thought that the
method is effective to various problems.

To determine the significance of the proposed method,
statistical analysis was performed using one-sided Welch’s t-
test for the mean FEs of the standard DE and that of DESFC
with C being 1, 2, 3, 4 and 5. It is thought that the proposed
method is significantly better than the standard DE because p-
values in all parameter settings and all functions are less than
0.001.

Figures 5 to 17 show the change of best objective value
found over the number of FEs within 200,000 evaluations.
Apparently, the proposed method can find better objective
values faster than the standard DE in all problems.

VII. CONCLUSION

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve nonlinear optimization
problems. In this study, we proposed the DE with speciation
using fuzzy clustering and partition entropy to improve the
efficiency and also robustness of DE. Especially, it is a quite
new approach to detect the distribution of search points using
FCM and to control an algorithm parameter. It was shown
that DESFC can reduce the number of function evaluations for
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Fig. 5. The graph of f1
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Fig. 6. The graph of f2
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Fig. 7. The graph of f3
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Fig. 8. The graph of f4
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Fig. 9. The graph of f5
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Fig. 10. The graph of f6
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Fig. 11. The graph of f7
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Fig. 12. The graph of f8
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Fig. 13. The graph of f9
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Fig. 14. The graph of f10
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Fig. 15. The graph of f11
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Fig. 16. The graph of f12

finding near optimal solutions more than 25% in 11 problems
out of the 13 problems. Thus, it is thought that DESFC is a
very efficient optimization algorithm compared with standard
DEs.

The effect of the degree of fuzziness m is not studied in
this paper. It is thought that a proper value of the degree
enhances the ability to discriminate a biased distribution from
the uniform distribution. We plan to analyze the effect of the
degree.
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