
Grouping of Genes According to Correlation Coefficients
and Grouping-Based Crossover

for Adaptive Differential Evolution

Tetsuyuki Takahama
Department of Intelligent Systems, Hiroshima City University

Asaminami-ku, Hiroshima, 731-3194 Japan

E-mail: takahama@hiroshima-cu.ac.jp

Setsuko Sakai
Faculty of Commercial Sciences, Hiroshima Shudo University

Asaminami-ku, Hiroshima, 731-3195 Japan

E-mail: setuko@shudo-u.ac.jp

Abstract

When problems with strong dependency among deci-
sion variables are optimized, a characteristic distribu-
tion, which is a thin elliptical distribution, may appear.
In order to generate good children, it is necessary to
change the variables (genes) simultaneously along the
long axis of the elliptical distribution. Since binomial
crossover in differential evolution determines whether
each gene is crossed or not with the same probability,
it is difficult to change some genes simultaneously. In
this study, we propose a crossover operation GBX which
uses correlation coefficients of search points in order to
detect such distribution. The highly correlated genes
are grouped and the genes in each group are crossed
(or not crossed) simultaneously. However, if only GBX
is used, the diversity of the search points tends to be
lost rapidly. The adaptive control of the probability
for applying GBX is also proposed. The advantage of
the proposed method is shown by solving several bench-
mark problems.

1 Introduction

In population-based optimization methods such as
evolutionary algorithms (EAs), various information can
be obtained from the distribution of good search points.
Problems with strong dependency among decision vari-
ables are typical difficult optimization problems. When
such problems are optimized, a characteristic distribu-
tion, which is a thin elliptical distribution as shown
in Fig.1, may appear. In order to generate good chil-
dren in this case, it is necessary to change the variables
simultaneously along the long axis of the elliptical dis-
tribution so as to approach the optimal solution. A
similar distribution also may appear when the search
points are far from the optimal solution even in prob-

optimal

Fig. 1: The search points moving toward the optimal
solution

lems with independent variables. It is considered that
the search points can be move toward the optimal so-
lution efficiently by simultaneously changing the corre-
lated or non-separable variables.
In this study, we propose to use correlation coeffi-

cients of search points in order to detect such distri-
bution. The correlation coefficients between decision
variables can be obtained from the search points. The
highly correlated variables (genes) are grouped and the
grouped genes are crossed (or not crossed) simultane-
ously. It is expected that the problems with strong
dependency among variables can be efficiently solved.
Also, search points far from the optimal solution can
be efficiently moved toward the optimal solution.
The binomial crossover (BX) is a crossover operation

used in differential evolution (DE), which is an EA pro-
posed by Storn and Price [1] and has been success-
fully applied to optimization problems including non-
linear, non-differentiable, non-convex and multimodal
functions [2, 3, 4]. In BX, a gene, which is crossed
unconditionally, is randomly selected, and other genes
are crossed with the probability of the crossover rate.
In this study, we propose GBX (grouping-based bino-

mial crossover) which is a binomial crossover operation
where genes are grouped according to correlation coeffi-
cients and each group of genes is crossed or not crossed
simultaneously. In GBX, a gene, which is crossed un-
conditionally, is randomly selected as in BX. The gene
and genes which have large correlation coefficients with
it are grouped and are crossed. Regarding other genes,
each gene and the gene which has the largest correla-
tion coefficient with it are grouped if the genes does not
belong to any group yet. The genes in the same group
are crossed (or not crossed) with the crossover rate.
However, if only GBX is used as a crossover opera-

tion, the diversity of the search points tends to be lost
rapidly. In order to keep the diversity, the probability
of applying GBX is adaptively adjusted in this study.
Success cases, where the child is better than the parent,
are observed. The success rates of GBX and BX are
compared. The probability of the crossover operation
which has higher success rate is increased.
The performance of DE is affected by algorithm pa-

rameters such as a scaling factor F , a crossover rate CR
and so on. Many studies have been done to control the
parameters and the strategies. One of the most suc-
cessful studies on controlling the parameters is JADE
(adaptive DE with optional external archive) [5]. In
this study, GBX and adaptive adjustment of the prob-
ability of applying GBX is introduced to JADE. The
advantage of the proposed method is shown by solving
thirteen benchmark problems.
In Section II, related works are described. DE and

JADE are briefly explained in Section III. In Section
IV, GBX and its adaptive control is proposed. The
experimental results are shown in Section V. Finally,
conclusions are described in Section VI.

2 Related Works

Identifying the dependency among variables is called
linkage identification, and is very important issue in
search process. There are some studies for linkage
identification: In [6], LINC(Linkage Identification by
Nonlinearity Check) is proposed for genetic algorithm.
In [7], learning of linkage matrix, of which elements
indicate the strength of the linkage between the i-th
variable and the j-th variables is proposed for particle
swarm optimization. In [8], learning of linkage matrix,
which is different from [7], is proposed for differential
evolution.
Only LINC is explained, because these studies

adopted a similar idea. In order to obtain the strength
of linkage between the i-th variable and the j-th vari-
able, the followings are obtained:

△fi = f(· · · , x′
i, · · · , xj , · · ·)− f(· · · , xi, · · · , xj , · · ·) (1)

△fj = f(· · · , xi, · · · , x
′
j , · · ·)− f(· · · , xi, · · · , xj , · · ·) (2)

△fij = f(· · · , x′
i, · · · , x

′
j , · · ·)− f(· · · , xi, · · · , xj , · · ·) (3)

where △fi is the change of function value when only

the i-th variable is perturbed, △fj is the change when
only the j-th variable is perturbed and △fij(i < j) is
the change when both variables are perturbed. If the
i-th variable and the j-th variable are independent, the
following is satisfied.

△fij = △fi +△fj (4)

Conversely, if this condition is not satisfied, it is thought
that there is a linkage between the i-th variable and the
j-th variable. The strength of the linkage eij can be
defined as follows:

eij = |△fij − (△fi +△fj)| (5)

LINC needs the number of function evaluations
O(D2). If the computing cost of the objective func-
tion is high, it is very difficult to identify the linkage
many times. However, there are many problems of
which landscape is very different in macroscopic view
and microscopic view. In such case, it is difficult to use
this type of linkage identification.
On the other hand, a correlation matrix is used in this

study and does not require extra function evaluations.
Therefore, the proposed method can be applied to such
problems.

3 Differential Evolution

3.1 Optimization Problems
In this study, the following optimization problem with

lower bound and upper bound constraints will be dis-
cussed.

minimize f(x)
subject to lj ≤ xj ≤ uj , j = 1, . . . , D,

(6)

where x = (x1, x2, · · · , xD) is a D dimensional vector
and f(x) is an objective function. The function f is a
nonlinear real-valued function. Values lj and uj are the
lower bound and the upper bound of xj , respectively.

3.2 Differential Evolution
In DE, initial individuals are randomly generated

within given search space and form an initial popu-
lation of size N . Each individual xi, i = 1, 2, · · · , N
contains D genes as decision variables. At each gen-
eration, all individuals are selected as parents. Each
parent is processed as follows: The mutation operation
begins by choosing several individuals from the popu-
lation except for the parent in the processing. The first
individual is a base vector. All subsequent individuals
are paired to create difference vectors. The difference
vectors are scaled by a scaling factor F and added to the
base vector. The resulting vector, or a mutant vector,
is then recombined with the parent. The probability of
recombination at an element is controlled by a crossover
rate CR. This crossover operation produces a child, or
a trial vector. Finally, for survivor selection, the trial

binomial crossover DE/·/·/bin
jrand=randint(1,D);

for(k=1; k ≤ D; k++) {
if(k == jrand || u(0, 1) < CR) xchild

k =mk;

else xchild
k =xik;

}

Fig. 2: Binomial crossover operation, where
randint(1,D) generates an integer randomly from
[1, D] and u(l, r) is a uniform random number
generator in [l, r].

vector is accepted for the next generation if the trial
vector is better than the parent.
There are some variants of DE that have been pro-

posed. The variants are classified using the nota-
tion DE/base/num/cross such as DE/rand/1/bin and
DE/rand/1/exp.
“base” specifies a way of selecting an individual that

will form the base vector. For example, DE/rand selects
an individual for the base vector at random from the
population. DE/best selects the best individual in the
population.
“num” specifies the number of difference vectors used

to perturb the base vector. In case of DE/rand/1, for
example, for each parent xi, three individuals xp1, xp2

and xp3 are chosen randomly from the population with-
out overlapping xi and each other. A new vector, or a
mutant vector m is generated by the base vector xp1

and the difference vector xp2 − xp3, where F is the
scaling factor.

m = xp1 + F (xp2 − xp3) (7)

“cross” specifies the type of crossover that is used to
create a child. For example, ‘bin’ indicates that the
crossover is controlled by the binomial crossover using
a constant crossover rate, and ‘exp’ indicates that the
crossover is controlled by a kind of two-point crossover
using exponentially decreasing the crossover rate. Fig-
ure 2 shows the binomial crossover. A new child xchild

is generated from the parent xi and the mutant vector
m, where CR is a crossover rate.

3.3 JADE
In JADE, the mean value of the scaling factor µF and

the mean value of the crossover rate µCR are learned
to define two probability density functions, where ini-
tial values are µF=µCR=0.5. The scaling factor Fi and
the crossover rate CRi for each individual xi are inde-
pendently generated according to the two functions as
follows:

Fi ∼ C(µF , σF) (8)

CRi ∼ N(µCR, σ
2
CR) (9)

where Fi is a random variable according to a Cauchy
distribution C(µF , σF) with a location parameter µF

and a scale parameter σF=0.1. CRi is a random vari-
able according to a normal distribution N(µCR, σ

2
CR) of

a mean µCR and a standard deviation σCR=0.1. CRi is
truncated to [0, 1] and Fi is truncated to be 1 if Fi > 1
or regenerated if Fi ≤ 0. The location µF and the mean
µCR are updated as follows:

µF = (1− c)µF + cSF 2/SF (10)

µCR = (1− c)µCR + cSCR/SN (11)

where SN is the number of success cases, SF , SF 2 and
SCR are the sum of F , F 2 and CR in success cases,
respectively. A constant c is a weight of update in (0,1]
and the recommended value is 0.1.
JADE adopts a strategy called “current-to-pbest”

where an intermediate point between a parent xi and
a randomly selected point from top individuals is used
as a base vector. A mutation vector is generated by
current-to-pbest without an archive as follows:

m = xi + Fi(xpbest − xi) + Fi(xr2 − xr3)(12)

where xpbest is a randomly selected individual from the
top 100p% individuals.
In order to satisfy bound constraints, a child that is

outside of the search space is moved into the inside of
the search space. In JADE, each outside element of the
child is set to be the middle between the corresponding
boundary and the element of the parent as follows:

xchild
j =

{
1
2
(lj + xij) (xchild

j < lj)
1
2
(uj + xij) (xchild

j > uj)
(13)

This operation is applied when a new point is generated
by JADE operations.

4 Proposed method

4.1 Grouping-based binomial crossover (GBX)
In the usual binomial crossover, the probability that

genes of the mutant vector are inherited to the child is
specified by the crossover probability CR. Each gene is
inherited to the child with the same probability. How-
ever, in problems where dependency among variables is
strong, it is difficult to generate a good child unless
genes with strong dependency are inherited simulta-
neously. Therefore, in this study, we propose a new
crossover operation GBX where genes with large cor-
relation coefficients are grouped and the genes in the
same group are crossed simultaneously.
A correlation coefficient is an index for measuring the

correlation between two variables. A correlation matrix
is defined by extending this to multiple variables and is
composed of the correlation coefficients. Let a popula-
tion be denoted by {xi|xi = (xij), j = 1, 2, · · · , D, i =
1, 2, · · · , N}, where D is the dimension of the problem
and N is the number of individuals. The correlation

matrix R = (rkj), where rkj is the correlation coeffi-
cient between the k-th variable (xk) and the j-th vari-
able (xj), can be defined as follows:

rkj =
1
N

∑N
i=1(xik − x̄k)(xij − x̄j)

σkσj
(14)

σj =

√√√√ 1

N

N∑
i=1

(xij − x̄j)2 (15)

x̄j =
1

N

N∑
i=1

xij (16)

If the correlation coefficient is 1, there is strong positive
correlation. If the correlation coefficient is −1, there
is strong negative correlation. From the viewpoint of
gene inheritance, it is thought that there is strong de-
pendency in both cases. Therefore, the absolute value
of the correlation coefficient is used for measuring the
strength of the dependency as follows:

ρkj = |rkj | (17)

In this study, the average of ρkj , or ρ̄ and standard
deviation of ρkj , or σρ are used to judge whether the
dependency is strong or not.

ρ̄ =
2

D(D − 1)

D∑
k=1

∑
j<k

ρkj (18)

σρ =

√√√√ 2

D(D − 1)

D∑
k=1

∑
j<k

(ρkj − ρ̄)2 (19)

A new algorithm parameter Sr is introduced for the
judgment. If the following condition is satisfied, it is
judged that the dependency is strong:

ρkj > ρstrong = max{ρ̄+ Srσρ, 0.15} (20)

The ρstrong is a threshold value. In order to avoid too
small threshold value, the minimum value of ρstrong is
defined as 0.15. If Sr=0, the dependency is strong if
the coefficient is greater than the average coefficients.
The algorithm of GBX is shown in Fig.3. The groups

of genes are formed as follows and the genes in the same
group are crossed (or not crossed) simultaneously. As
in BX, jrand, where the gene is inherited from the mu-
tant vector unconditionally, is a randomly selected. The
genes which have strong correlation coefficients with it
are grouped and are crossed. Regarding other genes,
each gene and the gene which has the largest correla-
tion coefficient with it are grouped if the genes does
not belong to any group yet. The genes in the same
group are crossed (or not crossed) with the crossover
rate CRi. The gene, or variable xmρk

, which has the
largest coefficient with each gene, or variable xk is de-
fined as follows:

mρk
= argmax

j ̸=k
ρkj (21)

for(j=1; j ≤ D; j++) cross[j]=-1; // crossover flags

jrand=randint(1,D);

cross[jrand]=1; // unconditionally crossed at jrand

j=jrand;

for(l=1; l ≤ D; l++) {
if(cross[j] >= 0); // already in a group

else if(ρjrand,j > ρstrong) cross[j]=1;

else if(u(0, 1) < CRi) cross[j]=1;
else cross[j]=0;
if(cross[mρj]==-1 && ρj,mρj

> ρstrong)

cross[mρj]=cross[j];

j=(j+1)%D;

}
for(j=1; j ≤ D; j++) {

if(cross[j]==1) xchild
j =mj;

else xchild
j =xj;

}

Fig. 3: The algorithm of GBX

It is thought that proper means µF and µCR for GBX
and for BX are different. Thus, the means for GBX
and the means for BX are separately learned by JADE
method. µk

F and µk
CR are introduced where k=1 for

GBX and k=0 for BX, which are similar to the group
learning in [9].

4.2 Adaptive control of the rate of GBX
In GBX, the diversity of the search points tends to be

lost rapidly. In this study, the probability of applying
GBX is adaptively controlled. Let the probability of
GBX be denoted by RGBX . The initial value of RGBX

is 0.5 and the range of RGBX is in [0.05,0.95] in order
to give opportunities to both of GBX and BX. Success
cases, where the child is better than the parent, are
observed. The success rate of GBX (s1) and that of
BX (s0) are compared. if s1 is greater than s0, RGBX

is increased. In the opposite case, RGBX is decreased.

4.3 Algorithm
The algorithm of the proposed method ADEGBX

(Adaptive DE with GBX) can be described as follows:

Step0 Parameter setup. The mean values of scaling
factor µk

F=0.5 and the mean values of crossover
rate µk

CR=0.5, k = 0, 1, where k = 0 for BX and
k = 1 for GBX. The scale parameter σF=0.1 and
the standard deviation σCR=0.1. The probability
of using GBX RGBX=0.5.

Step1 Initialization of the individuals. N individuals
{xi|i = 1, 2, · · · , N} are generated randomly in
the search space and form an initial population.

Step2 Termination condition. If the number of func-
tion evaluations exceeds the maximum number of
evaluations FEmax, the algorithm is terminated.

Step3 Initialization for each generation. The list of
success cases Sk is made empty (k = 0, 1). The

number of trials for BX and GBX, or nk is ini-
tialized (k = 0, 1).

Step4 DE operation with adaptive parameters. GBX
or BX is selected according to RGBX . K is set to
0 in case of BX and is set to 1 in case of GBX. The
scaling factor Fi is generated according to Cauchy
distribution using µK

F . The crossover rate CRi

is generated according to the normal distribution
using µK

CR. GBX or BX is applied and a new child
is generated.

Step5 Survivor selection. If the child is better than the
parent, the operation is treated as a success case
and the child becomes a survivor. The success-
ful pair of parameter values (Fi, CRi) is added
to success cases SK . Otherwise, the parent xi

becomes a survivor. Go back to Step 4 until all
individuals are processed.

Step6 Learning of parameters. The means of the scal-
ing factor µk

F and the means of crossover rate µk
CR

are updated using Sk (k = 0, 1) according to Eqs.
(10) and (11). Success rates of GBX and BX are
obtained as |Sk|/nk, where |·| is the number of el-
ements. When the success rate of GBX is greater
than that of BX, RGBX is increased. In the op-
posite case, RGBX is decreased.

Step7 Go back to Step2.

Fig.4 shows the pseudo-code of the proposed method.

5 Numerical Experiments

In this paper, well-known thirteen benchmark prob-
lems are solved.

5.1 Test Problems
The 13 scalable benchmark functions are shown in Ta-

ble 1[5]. Every function has an optimal objective value
0. Some characteristics are briefly summarized as fol-
lows: Functions f1 to f4 are continuous unimodal func-
tions. The function f5 is Rosenbrock function which is
unimodal for 2- and 3-dimensions but may have multi-
ple minima in high dimension cases[10]. The function f6
is a discontinuous step function, and f7 is a noisy quar-
tic function. Functions f8 to f13 are multimodal func-
tions and the number of their local minima increases ex-
ponentially with the problem dimension[11]. Functions
f2, f3, f5, f10 and f11 are non-separable functions.
In order to investigate the performance for non-

separable problems, rotated problems are solved. The
rotated problems are obtained by rotating the bench-
mark problems: A candidate solution z is converted as
x = Mz and f(x) is minimized, where M is a rotation
matrix. In this study, Helmert matrix in Fig.5 is used
as the rotation matrix [13, 14].

JADE/current-to-pbest/1/adaptive GBX+BX()

{
+ µk

F =µk
CR=0.5, k=0,1;

σF = σCR=0.1;

+ RGBX=0.5; △R=0.01;

// Initialize a population

P=N individuals generated randomly in S;
FE=FE+N;

for(t=1; FE < FEmax; t++) {
+ (rkj)=Correlation matrix obtained by Eq.(14);

+ (ρkj) is obtained by Eq.(17);

+ ρstrong is obtained by Eq.(20);

+ mρk, k=1,· · · ,D are obtained by Eq.(21);

+ Sk=∅, k=0,1;

+ nk=0, k=0,1; // number of trials for BX and GBX

for(i=1; i ≤ N; i++) {
+ if(u(0, 1) < RGBX) K=1; // GBX

+ else K=0; // BX

+ nK++;

+ CRi = µK
CR +N(0, σ2

CR);

if(CRi < 0) CRi=0;

else if(CRi > 1) CRi=1;

do {
+ Fi=µ

K
F + C(0, σF);

} while(Fi ≤ 0);
if(Fi > 1) Fi = 1;
xpbest = Randomly selected from top 100p% in P;

xr1 = Randomly selected from P(r1 ̸∈ {i});
xr2 = Randomly selected from P(r2 ̸∈ {i, r1});
mi = xi+Fi(xpbest − xi)+Fi(xr1 − xr2);

+ if(K==1)

+ xchild
i =GBX between xi and mi;

+ else

xchild
i =binomial crossover between xi and mi;

FE=FE+1;

// Survivor selection

if(f(xchild
i) < f(xi)) {

zi = xchild
i ;

SK = SK ∪ {(Fi, CRi)};
// a success case is added

}
else zi = xi;

}
P = {zi};

+ for(k=0; k < 2; k++)

+ if(|Sk| > 0) {
+ µk

F = (1− c)µk
F + c

∑
Fi∈Sk F 2

i /
∑

Fi∈Sk Fi;

+ µk
CR = (1− c)µk

CR + c
∑

CRi∈Sk CRi/|Sk|;
+ }
+ if(n0 > 0 && n1 > 0) {
+ s0 = |S0|/n0; // success rate of BX

+ s1 = |S1|/n1; // success rate of GBX

+ if(s1 > s0)

+ RGBX = RGBX +△R;

+ else if(s0 > s1)
+ RGBX = RGBX −△R;

+ if(RGBX > 0.95) RGBX=0.95;

+ else if(RGBX < 0.05) RGBX=0.05;

+ }
}

}

Fig. 4: The algorithm of proposed method

M =

1√
D

1√
D

1√
D

· · · 1√
D

1√
D

1√
2

−1√
2

0 · · · 0 0
1√
6

1√
6

−2√
6

· · · 0 0

...
...

... · · ·
...

...
1√

(D−2)+(D−2)2
1√

(D−2)+(D−2)2
1√

(D−2)+(D−2)2
· · · −(D−2)√

(D−2)+(D−2)2
0

1√
(D−1)+(D−1)2

1√
(D−1)+(D−1)2

1√
(D−1)+(D−1)2

· · · 1√
(D−1)+(D−1)2

−(D−1)√
(D−1)+(D−1)2

Fig. 5: Helmert matrix

Table 1: Test functions of dimension D. These are
sphere, Schwefel 2.22, Schwefel 1.2, Schwefel 2.21,
Rosenbrock, step, noisy quartic, Schwefel 2.26, Rast-
rigin, Ackley, Griewank, and two penalized functions,
respectively[12].

Test functions Search space

f1(x) =
∑D

i=1 x
2
i [−100, 100]D

f2(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i
j=1 xj

)2

[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1⌊xi + 0.5⌋2 [−100, 100]D

f7(x) =
∑D

i=1 ix
4
i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1 −xi sin
√

|xi|
+D · 418.98288727243369

[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D
[10 sin2(πy1) +

∑D−1
i=1 (yi − 1)2

{1+10 sin2(πyi+1)}+(yD −1)2]

+
∑D

i=1 u(xi, 10, 100, 4)
where yi = 1+ 1

4
(xi+1) and u(xi, a, k,m) = k(xi − a)m xi > a

0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1) +
∑D−1

i=1 (xi − 1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}] +
∑D

i=1 u(xi, 5, 100, 4)

[−50, 50]D

5.2 Conditions of Experiments
Experimental conditions are same as JADE as fol-

lows: Population size N = 100, initial mean for scal-
ing factor µF = 0.5 and initial mean for crossover
rate µCR = 0.5, the pbest parameter p=0.05, and
the learning parameter c=0.1. Sr are selected from
{0, 0.5, 1, 1.5} and △R=0.01 for ADEGBX.
Independent 50 runs are performed for 13 problems.

The number of dimensions for the problems is 30
(D=30). Each run stops when the number of func-

tion evaluations exceeds the maximum number of eval-
uations FEmax. In each function, different FEmax is
adopted.

5.3 Experimental Results
Table 2 shows the experimental results on JADE and

ADEGBX in case of Sr=0, 0.5, 1 and 1.5. The re-
sults of JADE can be obtained by ADEGBX with fixing
RGBX=0. The maximum number of function evalua-
tions is selected for each function and is shown in col-
umn labeled FEmax. The mean value and the standard
deviation of best objective values in 50 runs are shown
for each function. The median value is also shown un-
der the mean value. The best result among algorithms
is highlighted using bold face fonts. Also, Wilcoxon
signed rank test is performed and the result for each
function is shown under the mean value. Symbols ‘+’,
‘−’ and ‘=’ are shown when ADEGBX is significantly
better than JADE, is significantly worse than JADE,
and is not significantly different from JADE, respec-
tively. Symbols ‘++’ and ‘−−’ are shown when the
significance level is 1% and ‘+’ and ‘−’ are shown when
the significance level is 5%.
ADEGBX (Sr=1 and 1.5) attained significantly bet-

ter results than JADE in 12 functions except for f7.
ADEGBX (Sr=0.5) attained significantly better re-
sults than JADE in 11 functions except for f4 and f7.
ADEGBX (Sr=0) attained significantly better results
than JADE in 9 functions except for f3, f4, f7 and f11.
JADE did not attained significantly better results than
ADEGBX.
The median results excluding f11 are considered be-

cause the results of f11 are same in all methods.
ADEGBX (Sr=0) attained the best median results in
6 functions f2, f6, f8, f9, f12 and f13. ADEGBX
(Sr=0.5) attained the best median results in 4 functions
f1, f2, f6 and f10. ADEGBX (Sr=1.5) attained the
best median results in 2 functions f3 and f5. ADEGBX
(Sr=1) attained the best median result in f4. JADE
attained the best median result in f7.
Table 3 shows the experimental results for rotated

problems on JADE and ADEGBX in case of Sr=0, 0.5,
1 and 1.5.
ADEGBX (Sr=1) attained significantly better re-

sults than JADE in 11 functions except for f7 and f8.

Table 2: Experimental results

FEmax JADE ADEGBX (Sr = 0) ADEGBX (Sr = 0.5) ADEGBX (Sr = 1) ADEGBX (Sr = 1.5)

f1 150,000 9.38e-59 ± 6.53e-58 6.25e-69 ± 3.94e-68 3.32e-69 ± 1.62e-68 1.26e-59 ± 8.84e-59 5.91e-64 ± 3.51e-63
4.71e-66 8.42e-72 (++) 4.73e-72 (++) 4.44e-69 (++) 1.96e-68 (++)

f2 200,000 4.19e-31 ± 2.37e-30 1.40e-42 ± 8.86e-42 9.79e-44 ± 5.27e-43 9.21e-42 ± 4.07e-41 2.61e-34 ± 1.82e-33
1.96e-37 1.74e-47 (++) 1.74e-47 (++) 9.84e-46 (++) 1.22e-43 (++)

f3 500,000 8.17e-62 ± 3.01e-61 7.78e-60 ± 4.92e-59 2.37e-62 ± 1.25e-61 7.13e-65 ± 2.31e-64 5.49e-65 ± 2.54e-64
2.30e-63 1.32e-64 (=) 9.38e-66 (++) 1.35e-66 (++) 8.32e-68 (++)

f4 500,000 2.01e-23 ± 9.83e-23 1.49e-23 ± 8.89e-23 4.95e-25 ± 1.09e-24 1.52e-24 ± 6.07e-24 6.05e-26 ± 1.16e-25
9.27e-26 4.05e-26 (=) 1.27e-26 (=) 7.15e-27 (++) 1.06e-26 (++)

f5 150,000 5.83e-01 ± 3.56e+00 1.59e-01 ± 7.81e-01 3.19e-01 ± 1.08e+00 1.59e-01 ± 7.81e-01 2.39e-01 ± 9.47e-01
3.04e-09 4.75e-13 (++) 1.16e-13 (++) 9.19e-13 (++) 3.75e-14 (++)

f6 10,000 3.02e+00 ± 1.26e+00 4.20e-01 ± 5.69e-01 3.80e-01 ± 5.62e-01 1.20e+00 ± 9.59e-01 1.68e+00 ± 1.12e+00
3.00e+00 0.00e+00 (++) 0.00e+00 (++) 1.00e+00 (++) 2.00e+00 (++)

f7 300,000 6.04e-04 ± 2.38e-04 6.34e-04 ± 2.15e-04 7.03e-04 ± 3.31e-04 6.83e-04 ± 2.60e-04 6.44e-04 ± 2.27e-04
5.78e-04 6.54e-04 (=) 6.51e-04 (=) 6.61e-04 (=) 6.25e-04 (=)

f8 100,000 2.37e+00 ± 1.66e+01 4.74e+00 ± 2.32e+01 4.74e+00 ± 2.32e+01 4.74e+00 ± 2.32e+01 2.37e+00 ± 1.66e+01
2.87e-05 2.38e-10 (++) 5.36e-10 (++) 3.34e-09 (++) 2.36e-07 (++)

f9 100,000 1.01e-04 ± 3.91e-05 2.71e-06 ± 5.04e-06 2.53e-06 ± 4.40e-06 1.02e-05 ± 1.66e-05 2.26e-04 ± 1.38e-03
9.19e-05 1.07e-06 (++) 1.11e-06 (++) 2.55e-06 (++) 1.88e-05 (++)

f10 50,000 9.20e-10 ± 6.43e-10 4.32e-11 ± 2.74e-11 4.85e-11 ± 4.00e-11 1.33e-10 ± 9.38e-11 3.28e-10 ± 3.86e-10
7.15e-10 3.82e-11 (++) 2.90e-11 (++) 1.14e-10 (++) 2.26e-10 (++)

f11 50,000 1.15e-08 ± 6.91e-08 3.45e-04 ± 1.71e-03 3.94e-04 ± 1.99e-03 1.97e-04 ± 1.38e-03 1.63e-13 ± 1.06e-12
0.00e+00 0.00e+00 (=) 0.00e+00 (+) 0.00e+00 (+) 0.00e+00 (++)

f12 50,000 2.40e-16 ± 1.56e-15 3.72e-21 ± 8.74e-21 5.15e-21 ± 9.79e-21 4.02e-20 ± 1.01e-19 1.20e-18 ± 4.09e-18
2.27e-18 1.26e-21 (++) 1.44e-21 (++) 1.18e-20 (++) 1.02e-19 (++)

f13 50,000 1.15e-16 ± 2.23e-16 1.25e-19 ± 3.28e-19 1.02e-19 ± 2.25e-19 6.22e-19 ± 9.30e-19 1.48e-17 ± 5.49e-17
2.69e-17 2.56e-20 (++) 2.66e-20 (++) 3.11e-19 (++) 2.25e-18 (++)

+ — 9 11 12 12
= — 4 2 1 1
− — 0 0 0 0

Table 3: Experimental results for rotated problems

FEmax JADE ADEGBX (Sr = 0) ADEGBX (Sr = 0.5) ADEGBX (Sr = 1) ADEGBX (Sr = 1.5)

f1 150,000 9.38e-59 ± 6.53e-58 6.25e-69 ± 3.94e-68 3.32e-69 ± 1.62e-68 1.26e-59 ± 8.84e-59 5.91e-64 ± 3.51e-63
4.71e-66 8.42e-72 (++) 4.73e-72 (++) 4.44e-69 (++) 1.96e-68 (++)

f2 200,000 2.42e-26 ± 1.70e-25 9.68e-17 ± 4.47e-16 1.19e-06 ± 8.24e-06 1.39e-05 ± 9.76e-05 4.17e-07 ± 2.92e-06
8.02e-40 2.19e-44 (=) 2.31e-45 (=) 2.33e-44 (+) 3.02e-42 (=)

f3 500,000 2.29e-77 ± 6.76e-77 2.78e-78 ± 1.36e-77 2.89e-80 ± 1.97e-79 4.00e-80 ± 2.79e-79 3.33e-83 ± 1.75e-82
3.02e-79 4.10e-82 (++) 3.95e-84 (++) 1.73e-84 (++) 2.56e-85 (++)

f4 500,000 1.99e-12 ± 7.88e-12 8.84e-24 ± 4.12e-23 2.66e-26 ± 1.45e-25 2.47e-27 ± 7.15e-27 6.82e-27 ± 3.47e-26
4.13e-26 1.85e-27 (++) 9.90e-29 (++) 3.71e-29 (++) 7.41e-30 (++)

f5 150,000 5.75e+00 ± 3.77e+00 3.00e+00 ± 2.69e+00 4.15e+00 ± 3.09e+00 3.57e+00 ± 2.68e+00 4.04e+00 ± 3.02e+00
4.54e+00 2.61e+00 (++) 4.10e+00 (+) 3.09e+00 (++) 3.54e+00 (+)

f6 10,000 3.48e+00 ± 1.22e+00 5.00e-01 ± 6.08e-01 6.00e-01 ± 6.63e-01 1.24e+00 ± 9.91e-01 2.28e+00 ± 1.04e+00
3.00e+00 0.00e+00 (++) 5.00e-01 (++) 1.00e+00 (++) 2.00e+00 (++)

f7 300,000 7.15e-04 ± 3.19e-04 7.53e-04 ± 3.51e-04 7.51e-04 ± 3.10e-04 7.50e-04 ± 3.21e-04 6.17e-04 ± 2.43e-04
6.75e-04 6.83e-04 (=) 6.79e-04 (=) 6.79e-04 (=) 5.50e-04 (=)

f8 100,000 2.04e+03 ± 4.08e+02 2.13e+03 ± 3.35e+02 2.00e+03 ± 4.39e+02 2.07e+03 ± 4.43e+02 2.12e+03 ± 4.59e+02
2.09e+03 2.14e+03 (=) 2.08e+03 (=) 2.06e+03 (=) 2.24e+03 (=)

f9 100,000 3.68e+01 ± 4.63e+00 3.19e+01 ± 4.42e+00 3.21e+01 ± 4.69e+00 3.01e+01 ± 4.67e+00 3.00e+01 ± 4.74e+00
3.70e+01 3.28e+01 (++) 3.25e+01 (++) 3.03e+01 (++) 2.96e+01 (++)

f10 50,000 7.62e-10 ± 5.20e-10 4.81e-11 ± 3.18e-11 5.00e-11 ± 4.33e-11 1.56e-10 ± 1.54e-10 2.46e-10 ± 2.37e-10
6.87e-10 4.12e-11 (++) 3.82e-11 (++) 1.20e-10 (++) 1.69e-10 (++)

f11 50,000 1.50e-04 ± 1.04e-03 1.97e-04 ± 1.38e-03 6.17e-12 ± 3.03e-11 2.23e-04 ± 1.39e-03 1.48e-04 ± 1.04e-03
3.60e-14 5.55e-17 (++) 5.55e-16 (++) 1.94e-15 (+) 6.99e-15 (++)

f12 50,000 9.13e-13 ± 3.22e-12 1.75e-15 ± 2.97e-15 1.34e-14 ± 8.27e-14 7.17e-15 ± 9.62e-15 3.15e-14 ± 7.74e-14
4.85e-14 8.16e-16 (++) 7.87e-16 (++) 3.31e-15 (++) 5.67e-15 (++)

f13 50,000 6.85e-11 ± 4.00e-10 8.11e-15 ± 1.80e-14 1.06e-14 ± 2.04e-14 5.37e-14 ± 1.22e-13 5.20e-13 ± 1.07e-12
6.14e-13 2.01e-15 (++) 3.53e-15 (++) 1.89e-14 (++) 1.05e-13 (++)

+ — 10 10 11 10
= — 3 3 2 3
− — 0 0 0 0

ADEGBX (Sr=0, 0.5, 1.5) attained significantly better
results than JADE in 10 functions except for f2, f7 and
f8. JADE did not attained significantly better results
than ADEGBX.
ADEGBX (Sr=0) attained the best median results

in 4 functions f5, f6, f11 and f13. ADEGBX (Sr=0.5)
attained the best median results in 4 functions f1, f2,
f10 and f12. ADEGBX (Sr=1.5) attained the best me-
dian results in 4 functions f3, f4, f7 and f9. ADEGBX
(Sr=1) attained the best median result in f8. JADE
attained no best median result.
It is thought that from the viewpoint of statistical test

ADEGBX (Sr=1) is the most stable method although
the median values are not good compared with other
ADEGBX methods.

6 Conclusions

We proposed a crossover operation GBX which
groups genes according to correlation coefficients and
the genes in the same group are crossed or not crossed
simultaneously. The groups are decided so that highly
correlated variables are inherited at the same time.
Also, adaptive control of the probability of applying
GBX is proposed. From numerical experiments, it
is shown that ADEGBX (Sr=1) attained significantly
better results and better median results compared with
JADE in many problems.
In this paper, all search points are used to obtain the

correlation matrix. If some good search points are used
for the matrix, it is expected that the identification of
dependency may become more accurate.

References

[1] R. Storn and K. Price, “Differential evolution – A
simple and efficient heuristic for global optimiza-
tion over continuous spaces,” Journal of Global
Optimization, vol. 11, pp. 341–359, 1997.

[2] K. Price, R. Storn, and J. A. Lampinen, Differ-
ential Evolution: A Practical Approach to Global
Optimization. Springer, 2005.

[3] U. K. Chakraborty, Ed., Advances in Differential
Evolution. Springer, 2008.

[4] S. Das and P. Suganthan, “Differential evolution:
A survey of the state-of-the-art,” IEEE Transac-
tions on Evolutionary Computation, vol. 15, no. 1,
pp. 4–31, Feb. 2011.

[5] J. Zhang and A. C. Sanderson, “JADE: Adap-
tive differential evolution with optional exter-
nal archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, Oct.
2009.

[6] M. Munetomo and D. E. Goldberg, “A genetic al-
gorithm using linkage identification by nonlinear-
ity check,” in Proc. of the 1999 IEEE Interna-
tional Conference on Systems, Man, and Cyber-
netics, vol. 1, 1999, pp. 595–600.

[7] D. Devicharan and C. K. Mohan, “Particle swarm
optimization with adaptive linkage learning,” in
Proceedings of the 2004 Congress on Evolutionary
Computation, vol. 1, June 2004, pp. 530–535.

[8] Y. Cai and J. Wang, “Differential evolution with
hybrid linkage crossover,” Information Sciences,
vol. 320, pp. 244–287, Nov. 2015.

[9] T. Takahama and S. Sakai, “An adaptive differ-
ential evolution with learning parameters accord-
ing to groups defined by the rank of objective val-
ues,” in Proc. of the Eighth International Confer-
ence on Swarm Intelligence (ICSI2017), Jul. 2017,
pp. 411–419.

[10] Y.-W. Shang and Y.-H. Qiu, “A note on the ex-
tended Rosenbrock function,” Evolutionary Com-
putation, vol. 14, no. 1, pp. 119–126, Apr. 2006.

[11] X. Yao, Y. Liu, , and G. Lin, “Evolutionary pro-
gramming made faster,” IEEE Transactions on
Evolutionary Computation, vol. 3, pp. 82–102, Jul.
1999.

[12] X. Yao, Y. Liu, K.-H. Liang, and G. Lin, “Fast
evolutionary algorithms,” in Advances in Evo-
lutionary Computing: Theory and Applications,
A. Ghosh and S. Tsutsui, Eds. New York, NY,
USA: Springer-Verlag New York, Inc., 2003, pp.
45–94.

[13] Y. Akimoto, Y. Nagata, J. Sakuma, I. Ono,
and S. Kobayashi, “Proposal and evaluation of
adaptive real-coded crossover arex,” Trans. of the
Japanese Society of Artificial Intelligence, vol. 24,
no. 6, pp. 446–458, 2009, in Japanese.

[14] S. Sakai and T. Takahama, “A study on selecting
an oblique coordinate system for rotation-invariant
blend crossover in a real-coded genetic algorithm,”
in Recent Studies in Economic Sciences: Informa-
tion Systems, Project Managements, Economics,
OR and Mathematics, A.Kadoya and H.Teramoto,
Eds. Kyushu University Press, Mar. 2018, pp.
65–87.

