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Abstract—Differential Evolution (DE) has been successfully
applied to various optimization problems. The performance of
DE is affected by algorithm parameters, mutation strategies and
so on. One of the most successful studies on controlling the pa-
rameters is JADE. In this study, we focus on mutation strategies
and propose an adaptive mutation strategy to improve JADE.
Some directional mutation strategies, which utilize directional
difference vectors from bad individuals to good individuals, have
been proposed to improve search speed. However, in order to
avoid local solutions, the vectors in opposite direction may be
necessary. The proper frequency of such vectors depends on
the problem and the search process. We propose an adaptive
mutation strategy that controls the frequency of directional and
opposite directional vectors adaptively to realizes efficient and
stable search. The advantage of JADE with the proposed method
is shown by solving thirteen benchmark problems.

Index Terms—evolutionary algorithm, differential evolution,
directional mutation, adaptive directional mutation

I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs) such as genetic
algorithms and differential evolution (DE). DE was proposed
by Storn and Price [1] and has been successfully applied to
various optimization problems [2]–[4]. It has been shown that
DE is a very fast and robust algorithm.

The performance of DE is affected by algorithm parameters
such as a scaling factor F , a crossover rate CR and population
size, and by mutation strategies. Many studies have been
done to control the parameters and the strategies. One of
the most successful studies on controlling the parameters is
JADE(adaptive DE with optional external archive) [5].

In this study, we focus on the mutation strategies and
investigate a method to improve the search efficiency of
JADE. In DE, a child is generated by crossing a parent
with a mutant vector generated by a mutation operation. The
mutant vector is obtained by perturbing a base vector with
one or more difference vectors. The difference vectors are
usually obtained by taking the difference between randomly
selected individuals and the direction of the difference vectors
is not considered. On the other hand, mutation strategies using
directional difference vectors from bad individuals to good

individuals have been proposed [6]–[8]. When the population
is converging to the optimal solution, whether the directional
difference vectors are effective or not depends on the position
of the base vector. When the population is moving towards
the optimal solution, the directional difference vectors are
often effective moving directions as in Fig. 1, and the search
efficiency will be improved. However, if only the directional
difference vectors are used, there is a risk that the population
moves in same direction repeatedly and the population will be
trapped in a local solution.

optimal

directional difference vectors

mutant vectors

Fig. 1. Directional difference vectors when the population is moving towards
the optimal solution.

In order to realize stable search, it is necessary to properly
adjust the frequency of directional difference vectors and
opposite directional difference vectors. It is thought that the
proper frequency depends on the problem and the search
process. In this study, the population is sorted by the objective
function value to obtain the ranks of individuals. The adaptive
directional mutation is realized by adaptively determining the
range of ranks for starting individuals and ending individuals
of the difference vectors. The advantage of JADE with the
adaptive directional mutation is shown by solving thirteen
benchmark problems.

In Section 2, optimization problems and DE are briefly
explained. Related works including JADE are described in
Section 3. In Section 4, JADE with adaptive directional
mutation is proposed. The experimental results are shown in
Section 5. Finally, conclusions are described in Section 6.



II. OPTIMIZATION BY DIFFERENTIAL EVOLUTION

A. Optimization Problems

In this study, the following optimization problem with lower
bound and upper bound constraints will be discussed.

minimize f(x)
subject to lj ≤ xj ≤ uj , j = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values lj and uj are the lower bound and
the upper bound of xj , respectively.

B. Differential Evolution

In DE, an initial population is formed by generating ini-
tial individuals randomly within given search space. Each
individual xi, i = 1, 2, · · · , N contains D genes as decision
variables, where N is the population size. At each generation,
all individuals are selected as parents. Each parent xi is
processed as follows:

A mutation operation is performed by choosing several
individuals from the population except for the parent xi. The
first individual is a base vector. All subsequent individuals are
paired to create difference vectors. The difference vectors are
scaled by a scaling factor F and added to the base vector.
For example, in case of the rand mutation strategy with one
difference vector, the mutation operation is defined as follows:

mi = xr1 + F (xr2 − xr3) (2)

where three individuals xr1, xr2 and xr3 are chosen randomly
from the population without overlapping xi and each other,
and xr1 is the base vector.

The resulting vector, or a mutant vector, is then recombined
with the parent. The probability of recombination at an ele-
ment is controlled by a crossover rate CR. In case of the
binomial crossover, a child vi is created as follows:

vij =

{
mij if j = jrand or u(0, 1) < CR
xij otherwise

(3)

where jrand is a randomly selected integer in [1, D] and
u(0, 1) is a uniform random number in [0, 1].

This crossover operation produces a child, or a trial vector.
Finally, for survivor selection, the trial vector is accepted for
the next generation if the trial vector is better than the parent.

III. RELATED WORKS

The performance of DE is affected by algorithm parameters
such as F , CR and N , and by mutation strategies.

A. Studies on Algorithm Parameters

The methods of controlling algorithm parameters can be
classified into some categories as follows:

(1) selection-based control: Strategies and parameter values
are selected regardless of current search state. CoDE [9] gen-
erates three trial vectors using three strategies with randomly
selected parameter values from parameter candidate sets and
the best trial vector is used for the survivor selection.

(2) observation-based control: The current search state is
observed, proper parameter values are inferred according to the
observation, and parameters and/or strategies are dynamically
controlled. FADE [10] observes the movement of search
points and the change of function values between successive
generations, and controls F and CR. DESFC [11] adopts
fuzzy clustering, observes partition entropy of search points,
and controls CR and the mutation strategies between the rand
and the species-best strategy. LMDE [12], [13] detects the
landscape modality using the change of the objective values
at sampling points along a line. Greedy parameter settings for
local search are selected in unimodal landscape, and parameter
settings for global search are selected in multimodal landscape.

(3) success-based control: It is recognized as a success case
when a better search point than the parent is generated. The
parameters and/or strategies are adjusted so that the values
in the success cases are frequently used. The self-adaptation,
where parameters are contained in individuals and are evolved
by applying evolutionary operators to the parameters, is in-
cluded in this category. DESAP [14] controls F,CR and N
self-adaptively. SaDE [15] controls the selection probability
of the mutation strategies according to the success rates and
controls the mean value of CR for each strategy according
to the mean value in success case. jDE [16] controls F and
CR self-adaptively. JADE [5] and MDE pBX [17] control
the mean or power mean values of F and CR according to
the mean values in success cases. CADE [18] introduces the
correlation of F and CR to JADE.

B. Studies on Difference Vectors
There are some studies on difference vectors where some

directional information is considered.
In [19], a trigonometric mutation operation (TDE) is pro-

posed as follows:

m =
1

3
(xr1 + xr2 + xr3) (4)

+(p2 − p1)(xr1 − xr2) + (p3 − p2)(xr2 − xr3)

+(p1 − p3)(xr3 − xr1)

pk =
|f(xrk)|

|f(xr1)|+ |f(xr2)|+ |f(xr3)|
, k = 1, 2, 3 (5)

where m is the mutant vector and integers r1, r2, r3 are
randomly selected from [1, N ] without overlapping i and each
other. If xr1 is better than xr2, the value of (p2−p1) becomes
positive and the difference vector from a bad individual xr2 to
a good individual xr1 is used. It is thought that this operation
does not work well if f(·) is negative.

In [6], RAND/DIR and RAND/BEST/DIR strategies are
proposed as follows: Randomly selected individuals {xi} are
divided into two classes C+ and C− where ∀xi ∈ C+ and
∀xj ∈ C−, f(xi) ≤ f(xj).

V ±
s = λ(xmin

C±
− xmax

C±
), λ =

1

2
, (6)

xmin
C±

= arg min
x∈C±

f(x), xmax
C±

= arg max
x∈C±

f(x)

Vs =
1

2
(V +

s + V −
s ) (7)



where V ±
s is the shifts inside of each class, λ is influence

constant and Vs is the average shift. The mutant vector is
generated as follows:

m = VC+
+ F (VC+

− VC− + Vs), RAND/DIR (8)
m = xbest + F (VC+

− VC− + Vs), RAND/BEST/DIR (9)

where VC+ and VC− are barycenters of the C+ and C−,
respectively.

In [7], SRDE (Stochastic ranking based Differential Evolu-
tion) is proposed to solve constrained optimization problems
using stochastic ranking [20] as follows: Individuals in a
population is sorted using the stochastic ranking and the sorted
population is divided into two sets, upper individuals C+ and
lower individuals C− according to the population partitioning
factor which specify the rate of C+ in the population. The
mutant vector is generated as follows:

m = xr1 + F (xr2 − xr3) (10)

where xr1 is randomly selected from the population, xr2 is
randomly selected from C+ and xr3 is randomly selected from
C−.

In [21], we enhanced the idea of SRDE and proposed a
mutation operation, which allows overlap between C+ and
C− in order to use not only the directional difference vectors
but also the difference vectors in the opposite direction. xr2 is
selected from the first rank to the ⌊R+N⌋-th rank individuals
and xr3 is selected from the ⌊R+(1−Ro)N+1⌋-th rank to the
N -th rank individuals, where R+ is the population partitioning
rate, Ro is the overlapping rate and ⌊·⌋ is the round down to
the nearest integer.

In this study, we rearrange the idea of [21] and propose
adaptive control of difference vectors.

C. JADE

In JADE, the mean value of the scaling factor µF and the
mean value of the crossover rate µCR are learned to define
two probability density functions (PDFs), where initial values
are µF =µCR=0.5. The scaling factor Fi and the crossover
rate CRi for each individual xi are independently generated
according to the two PDFs as follows:

Fi ∼ C(µF , σF ) (11)
CRi ∼ N(µCR, σ

2
CR) (12)

where Fi is a random variable according to a Cauchy distri-
bution C(µF , σF ) with a location parameter µF and a scale
parameter σF =0.1. CRi is a random variable according to
a normal distribution N(µCR, σ

2
CR) of a mean µCR and a

standard deviation σCR=0.1. CRi is truncated to [0, 1] and Fi

is truncated to be 1 if Fi > 1 or regenerated if Fi ≤ 0. The
location µF and the mean µCR are updated as follows:

µF = (1− c)µF + cSF 2/SF (13)
µCR = (1− c)µCR + cSCR/SN (14)

where SN is the number of success cases, SF , SF 2 and SCR

are the sum of F , F 2 and CR in success cases, respectively. A

constant c is a weight of update in (0,1] and the recommended
value is 0.1.

JADE adopts a strategy called “current-to-pbest“ as follows:
A mutation vector is generated as follows:

mi = xi + Fi(xpbest − xi) + Fi(xr2 − x̃r3) (15)

where xpbest is a randomly selected individual from the top
100p% individuals. x̃r3 is selected randomly from the current
population in case of “without an archive”, and is selected
randomly from the union of the current population and an
archive in case of “with an archive”. The archive is initialized
to be empty. Defeated parents by the children are added to
the archive. If the number of archived individuals exceeds
the archive size, randomly selected individuals are removed
to keep the archive size.

In order to satisfy bound constraints, a child that is outside
of the search space is moved into the inside of the search
space. In JADE, each outside element of the child is set to
be the middle between the corresponding boundary and the
element of the parent as follows:

vij =

{
1
2
(lj + xij) if vij < lj

1
2
(uj + xij) if vij > uj

(16)

This operation is applied after a new point is generated by
JADE operations.

IV. PROPOSED METHOD

A. A Mutation Strategy with Omnidirectional to Directional
Difference Vectors

In this study, a new mutation strategy, which is the modified
version of [21], is proposed as follows:

1) The indexes I of the individuals in the population P ,
I = {1, 2, · · · , N} is sorted according to the objective
values f .

2) Let I2 be the indexes of individuals whose rank accord-
ing to f is 1 to rmax

2 , which is the set of the first element
to the rmax

2 -th element of I . When rmax
2 =N , I2 contains

all indexes. When rmax
2 is small, I2 includes only high-

ranking indexes.
3) Let I3 be the indexes of individuals whose rank is

rmin
3 to N , which is the set of the rmin

3 -th element
to the N -th element of I . When rmin

3 =1, I3 contains
all indexes. When rmin

3 is large, I3 includes only low-
ranking individuals.

4) mi = xi+Fi(xpbest−xi)+Fi(xr2−xr3) where r2 and
r3 are randomly selected from I2 and I3, respectively.

Instead of using the ranks in [1, N ], the rates of the ranks in
[0, 1] can be used. The rmax

2 can be specified by R2 which is
the rate of the rmax

2 . The rmin
3 can be specified by R3 which

is the rate of the rmin
3 . If R2 = 1 (rmax

2 = N ) and R3 = 0
(rmin

3 = 1), I2 and I3 are the set of all indexes, xr2 and xr3

are randomly selected from the population, and the difference
vector is omnidirectional which is equivalent to that of original
JADE. If R2 = 0.5 and R3 = 0.5, the difference vector is
directional which is almost equivalent to that of SRDE except
that (N2 + 1)-th element is included in both of I2 and I3.



Fig. 2 shows the range of ranks for xr2 and xr3 when
(R2, R3) is in {(1, 0), (0.6, 0.4), (0.5, 0.5)}. The mutation is
omnidirectional in case of (1,0), is directional in case of
(0.5,0.5) and is partly directional with overlapping in case
of (0.6,0.4). In this study, an overlapping rate is defined as
R2−R3. The overlapping rate is 1 in the omnidirectional case
(1,0), is zero or negative in directional cases such as (0.5,0.5).
is positive in the partly directional cases such as (0.6,0.4).
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Fig. 2. The range of ranks for 3 cases.

In order to maintain the diversity for r2 and r3, the
minimum size of I2 and I3 is set to minR=3 and the ranges
of indexes in I for I2 and I3 are modified accordingly. The
detail is explained in the next subsection.

B. Adaptive Directional Mutation

In adaptive directional mutation (ADM), the mean values of
the two parameters µR2 , µR3 ∈ [0, 1] are learned, where initial
values are µR2

= 1 and µR3
= 0. The values R2i, R3i ∈ [0, 1]

for each individuals xi are independently generated according
to µR2

and µR3
as follows:

R2,i ∼ N(µR2 , σ
2
R) truncated to [minR/N, 1] (17)

R3,i ∼ N(µR3 , σ
2
R) truncated to [0, 1− minR/N ] (18)

where σR is the standard deviation.
rmax
2 and rmin

3 are determined as follows:

rmax
2,i = ⌊R2,iN + 1⌋ truncated to N (19)

rmin
3,i = ⌊R3,iN + 1⌋ truncated to N (20)

r2 and r3 are randomly selected integers from the first to
the rmax

2,i -th and the rmin
3,i -th to the N -th elements of I ,

respectively.
The mean values are updated as follows:

µR2 = (1− c)µR2 + cSR2/SN (21)
µR3 = (1− c)µR3 + cSR3/SN (22)

where SR2
and SR3

are the sum of R2,i and R3,i in success
cases, respectively.

C. Algorithm

The algorithm of the proposed method JADEadm (JADE
with adaptive directional mutation) can be described as fol-
lows:

Step0 Parameter setup. The size of the archive NA is
specified as zero (without the archive) or N (with the
archive). The initial mean values µR2

=1 and µR3
=0,

minR=3 and the standard deviation σR is specified.

Step1 Initialization of the individuals. P = {xi|i =
1, 2, · · · , N} are generated randomly in the search
space and form an initial population. The archive A
is made empty.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uations FEmax, the algorithm is terminated.

Step3 Initialization for each generation. The list of suc-
cess cases S is made empty. The set of indexes
I = {1, 2, · · · , N} of the individuals in P is sorted
according to the objective values.

Step4 JADE operation with adaptive directional mutation.
For each individual xi, Fi is generated according to
Eq.(11) and CRi is generated according to Eq.(12).
rmax
2,i and rmin

3,i are generated according to Eqs.(17),
(19) and Eqs.(18), (20), and I2 and I3 are deter-
mined, respectively. r2 and r3 are randomly selected
from I2 and I3, respectively. JADE operation is
executed and a new child is generated.

Step5 Survivor selection. If the child is better than the
parent, or in a success case, the child becomes a
survivor. The successful combination of parameter
values (Fi, CRi, R2,i, R3,i) is added to S. Defeated
parent is added to A. Otherwise, the parent xi

becomes a survivor. Go back to Step 4 until all
individuals are processed.

Step6 Resizing the archive. If the size of the archive
exceeds NA, randomly selected elements in A are
deleted until the size of A becomes NA.

Step7 Learning parameters. The means of the scaling factor
µF and the means of crossover rate µCR are updated
using S according to Eqs. (13) and (14). The means
for adaptive directional mutation µR2 and µR3 are
updated using S according to Eqs. (21) and (22). Go
back to Step2.

Figure 3 shows the pseudo-code of JADEadm. Lines starting
with ‘+’ shows the modified lines from original JADE.

V. NUMERICAL EXPERIMENTS

In this paper, well-known thirteen benchmark problems are
solved.

A. Test Problems

The 13 scalable benchmark functions [5] are solved. Every
function has an optimal objective value 0. Functions f1
to f4 are continuous unimodal functions. The function f5
is Rosenbrock function which is unimodal for 2- and 3-
dimensions but may have multiple minima in high dimension
cases. The function f6 is a discontinuous step function, and f7
is a noisy quartic function. Functions f8 to f13 are multimodal
functions and the number of their local minima increases
exponentially with the problem dimension.

Experimental conditions are same as JADE as follows:
Population size N = 100, initial mean for scaling factor µF

= 0.5 and initial mean for crossover rate µCR = 0.5, the pbest
parameter p = 0.05, and the learning parameter c = 0.1. The



JADEadm()

{
µF =µCR=0.5; σF =σCR=0.1; NA=0 or N; // archive size

+ µR2
=1; µR3

=0; minR=3; σR is specified;

// Initialize a population

P=N individuals generated randomly in the search space;

FE=N;

A=∅;
for(t=1; FE < FEmax; t++) {

// JADE with adaptive directional mutation

S=∅;
Indexes I is sorted according to objective values of P;

for(i=1; i ≤ N; i++) {
CRi = µCR + N(0, σ2

CR);

truncate CRi to [0, 1];

do {
Fi=µF + C(0, σF );

} while(Fi ≤ 0);

if(Fi > 1) Fi = 1;

+ R2,i=µR2
+ N(0, σ2

R) truncated to [minR /N, 1];

+ R3,i=µR3
+ N(0, σ2

R) truncated to [0, 1 − minR /N ];

+ rmax
2,i =⌊R2,iN + 1⌋ truncated to N;

+ rmin
3,i =⌊R3,iN + 1⌋ truncated to N;

+ I2=the first to the rmax
2,i -th elements of I;

+ I3=the rmin
3,i -th to the N-th elements of I;

pbest=Randomly selected from top 100p% in I;

+ r2=Randomly selected from I2 (r2 ̸∈ {i});
+ r3=Randomly selected from I3 ∪ Â (r3 ̸∈ {i, r2});

mi=xi+Fi(xpbest − xi)+Fi(xr2 − xr3);

vi=generated from xi and mi by crossover;

FE=FE+1;

// Survivor selection

if(f(vi) < f(xi)) {
zi=vi;

S=S ∪ {(Fi, CRi, R2,i, R3,i)}; // add a success case

if(NA>0) A=A ∪ {xi};
}
else zi = xi;

}
P = {zi};

// Resizing the archive

while(|A|>NA)

remove a randomly selected element from A;

// Learning parameters

if(|S| > 0) {
µF = (1 − c)µF + c

∑
Fi∈S F 2

i /
∑

Fi∈S Fi;

µCR = (1 − c)µCR + c
∑

CRi∈S CRi/|S|;
+ µR2

= (1 − c)µR2
+ c

∑
R2,i∈S R2,i/|S|;

+ µR3
= (1 − c)µR3

+ c
∑

R3,i∈S R3,i/|S|;
}

}
}

Fig. 3. The pseudo-code of the proposed method JADEadm where Â is
indexes of A.

archive size NA is selected from {0, N}, where NA=0 means
that the algorithm is executed without the archive. As for
JADEadm, initial means µR2=1 and µR3=0, and σR is selected
from {0.1, 0.2}.

Independent 50 runs are performed for 13 problems. The
number of dimensions for the problems is 30 (D = 30). Each
run stops when the number of function evaluations exceeds the
maximum number of evaluations FEmax. In each function,

different FEmax is adopted.

B. Experimental Results

Table I show the experimental results on JADE and
JADEadm (σR=0.1 and 0.2) with and without the archive.
The mean value, the standard deviation, and the median
value of best objective values in 50 runs are shown for each
function. The median value is shown under the mean value.
The maximum number of function evaluations is selected for
each function and is shown in column labeled FEmax. Since
the variability of each trial is not small and the reliability
of the mean value is not high, the best median value among
algorithms is highlighted. Also, Wilcoxon signed rank test is
performed and the result for each function is shown on the
right side of the median value in parentheses. Symbols ‘+’, ‘−’
and ‘=’ are shown when each algorithm is significantly better
than JADEadm (σR=0.2 without the archive), is significantly
worse than the JADEadm, and is not significantly different
from the JADEadm, respectively. Symbols ‘++’ and ‘−−’
show that the significance level is 1% and ‘+’ and ‘−’ show
that the significance level is 5%.

From Table I, JADEadm (σR=0.2 without the archive)
attained the best median results in 7 functions f1, f2, f6
and f10–f13 out of 13 functions. JADEadm (σR=0.2 with the
archive) attained the best median results in 5 functions f3–f5,
f8 and f9. JADEadm (σR=0.1 without the archive) attained the
best median results in 2 functions f6 and f7. JADE without
the archive attained the best median result in f6.

JADEadm (σR=0.2 without the archive) attained signifi-
cantly better results than JADE without the archive in 10
functions except for f6, f7 and f9 and attained no signifi-
cantly worse result than the JADE. The JADEadm attained
significantly better results than JADE with the archive in 12
functions except for f7 and attained no significantly worse
result. The JADEadm attained significantly better results than
JADEadm (σR=0.1 without the archive) in 8 functions and no
significantly worse result. The JADEadm attained significantly
better results than JADEadm (σR=0.1 with the archive) in
7 functions and attained 3 significantly worse results. The
JADEadm attained significantly better results than JADEadm
(σR=0.2 with the archive) in 7 functions and attained 5
significantly worse results. Thus, it is thought that JADEadm
(σR=0.2 without the archive) is the best method followed by
JADEadm (σR=0.2 with the archive). It is shown that the idea
of adaptive directional mutation is very effective and improve
the performance of JADE.

Figure 4 shows the change of µR2
and µR3

over the number
of function evaluations in case of JADEadm (σR=0.2 and 0.1
without the archive) for a unimodal function f1, a function
with ridge structure f5, a discrete function f6 and a multimodal
function f9. In all graphs, the value of µR2

gradually decreases
from 1 and the value of µR3

gradually increases from 0.
Also, the overlapping rate, µR2

− µR3
in this case, gradually

decreases from 1 to a smaller value.
Compared JADEadm (σR=0.1 without the archive) with

JADEadm (σR=0.2 without the archive), the changing speed



TABLE I
EXPERIMENTAL RESULTS ON 13 FUNCTIONS

Func FEmax JADEadm 0.2 w/o A JADE w/o A JADE w A JADEadm 0.1 w/o A JADEadm 0.1 w A JADEadm 0.2 w A
f1 150000 1.45e-64± 9.8e-64 9.38e-59± 6.5e-58 6.50e-58± 4.5e-57 6.25e-65± 3.2e-64 8.76e-61± 5.9e-60 1.33e-62± 5.7e-62

1.98e-72 4.71e-66 (−−) 1.13e-63 (−−) 2.56e-70 (=) 3.57e-67 (−−) 2.27e-67 (−−)
f2 200000 3.61e-29± 2.5e-28 4.19e-31± 2.4e-30 2.21e-24± 1.2e-23 5.01e-29± 2.6e-28 1.13e-24± 4.4e-24 1.58e-24± 1.1e-23

3.29e-41 1.96e-37 (−−) 6.73e-33 (−−) 5.73e-41 (=) 1.56e-35 (−−) 1.02e-38 (−−)
f3 500000 3.69e-88± 1.2e-87 8.17e-62± 3.0e-61 2.29e-83± 1.1e-82 2.73e-83± 1.1e-82 7.91e-95± 5.4e-94 6.77e-97± 4.0e-96

4.47e-91 2.30e-63 (−−) 7.25e-86 (−−) 5.64e-86 (−−) 3.53e-99 (++) 4.07e-101 (++)
f4 500000 4.17e-63± 2.0e-62 2.01e-23± 9.8e-23 1.58e-62± 4.3e-62 3.47e-53± 1.3e-52 1.40e-75± 5.8e-75 2.66e-77± 9.4e-77

5.51e-65 9.27e-26 (−−) 1.15e-63 (−−) 8.87e-55 (−−) 3.73e-77 (++) 1.40e-78 (++)
f5 150000 2.39e-01± 9.5e-01 5.83e-01± 3.6e+00 2.39e-01± 9.5e-01 1.59e-01± 7.8e-01 7.97e-02± 5.6e-01 7.97e-02± 5.6e-01

9.24e-26 3.04e-09 (−−) 1.82e-19 (−−) 1.61e-18 (−−) 4.27e-27 (++) 4.52e-30 (++)
f6 10000 2.92e+00± 1.2e+00 3.02e+00± 1.3e+00 4.92e+00± 1.4e+00 2.88e+00± 1.2e+00 3.94e+00± 1.5e+00 3.98e+00± 1.4e+00

3.00e+00 3.00e+00 (=) 5.00e+00 (−−) 3.00e+00 (=) 4.00e+00 (−−) 4.00e+00 (−−)
f7 300000 5.41e-04± 1.7e-04 6.04e-04± 2.4e-04 6.24e-04± 2.5e-04 5.40e-04± 2.5e-04 6.10e-04± 2.5e-04 5.50e-04± 1.8e-04

5.28e-04 5.78e-04 (=) 5.65e-04 (=) 5.01e-04 (=) 5.79e-04 (=) 5.20e-04 (=)
f8 100000 7.11e+00± 2.8e+01 2.37e+00± 1.7e+01 7.11e+00± 2.8e+01 9.48e+00± 4.0e+01 7.11e+00± 2.8e+01 9.48e+00± 3.2e+01

1.22e-05 2.87e-05 (−−) 3.70e-05 (−−) 2.08e-05 (−−) 1.52e-05 (=) 3.13e-06 (++)
f9 100000 1.04e-04± 5.8e-05 1.01e-04± 3.9e-05 1.34e-04± 7.2e-05 1.43e-04± 6.6e-05 9.55e-05± 4.7e-05 4.17e-05± 2.2e-05

8.82e-05 9.19e-05 (=) 1.18e-04 (−) 1.40e-04 (−−) 8.28e-05 (=) 3.50e-05 (++)
f10 50000 3.16e-10± 3.0e-10 9.20e-10± 6.4e-10 2.87e-09± 4.8e-09 4.22e-10± 3.0e-10 1.44e-09± 1.3e-09 9.18e-10± 7.4e-10

1.94e-10 7.15e-10 (−−) 1.88e-09 (−−) 3.42e-10 (−) 9.66e-10 (−−) 6.75e-10 (−−)
f11 40000 1.13e-11± 5.6e-11 3.17e-07± 1.6e-06 1.71e-07± 1.2e-06 3.34e-09± 2.3e-08 2.56e-07± 1.8e-06 1.03e-11± 3.7e-11

2.98e-13 2.55e-12 (−−) 4.68e-12 (−−) 7.65e-13 (=) 1.42e-12 (−−) 1.46e-12 (−)
f12 50000 1.22e-18± 2.2e-18 2.40e-16± 1.6e-15 3.20e-16± 1.1e-15 2.07e-03± 1.5e-02 4.39e-17± 1.7e-16 1.72e-17± 5.6e-17

2.11e-19 2.27e-18 (−−) 1.43e-17 (−−) 5.89e-19 (−) 3.28e-18 (−−) 2.13e-18 (−−)
f13 50000 1.15e-17± 2.9e-17 1.15e-16± 2.2e-16 7.98e-16± 1.4e-15 3.45e-17± 1.3e-16 1.27e-16± 2.5e-16 9.03e-17± 2.6e-16

3.03e-18 2.69e-17 (−−) 3.03e-16 (−−) 5.52e-18 (−) 3.13e-17 (−−) 1.70e-17 (−−)
+ — 0 0 0 3 5
= — 3 1 5 3 1
− — 10 12 8 7 7

of µR2
and µR3

is much faster at σR=0.2 than at σR=0.1. It is
thought that the reason why JADEadm with σR=0.2 was better
than JADEadm with σR=0.1 is that generating the values of
R2,i and R3,i in a wide range could find the appropriate values
of µR2 and µR3 quickly.

As for the unimodal function f1, in case of σR=0.2, the
overlapping rate at 100,000 evaluations was about 0.044. It is
thought that the mutation is changed from omnidirectional to
almost directional and the search efficiency was improved.

As for the function with ridge structure f5, in case of
σR=0.2, the overlapping rate at 100,000 evaluations was about
-0.025. It is thought that the mutation is changed from om-
nidirectional to directional completely. In the ridge structure,
the individuals need to move through a thin path and approach
the optimal solution. The directional mutation supported this
move and the search efficiency was improved.

As for the discrete function f6, the function value is
a discrete value, and many individuals will take the same
function value as the search progresses. When all individuals
are sorted according to the function value, even the same
function value will be ranked differently, and the ranking will
be inaccurate. Since the exact direction from good individual
to bad individual is not known, the overlapping rate remains
high, where the overlapping rate at 100,000 evaluations was
about 0.425 in case of σR=0.2. The improvement of search
efficiency is not large.

As for the multimodal function f9, in case of σR=0.2, the
overlapping rate at 100,000 evaluations was about 0.069. The
rates in f1 and f9 were similar, but the rate in the multimodal

function f9 is slightly higher than the rate in the unimodal
function f1. In multimodal functions, the individuals need
higher diversity than in unimodal problems in order to avoid
local solutions. Therefore, the overlapping rate is larger than
in unimodal functions.

VI. CONCLUSION

In this study, a new mutation strategy including from
omnidirectional to directional mutation and adaptive control
of the strategy was proposed to improve the performance of
JADE. It has been shown that using a directional difference
vector from a bad individual to a good individual is effective
to enforce convergence speed. However, there is a risk of
premature convergence. Therefore, we enhanced the idea of
SRDE, where difference vectors from lower rank individuals
to higher rank individuals were used, so as to permit overlap
between the higher and the lower rank individuals. The two
adaptive parameters µR2

and µR3
were introduced to generate

the parameters rmax
2 and rmin

3 , which realize various mutation
from omnidirectional to directional, based on the values R2,i

and R3,i in success cases. The proposed method was applied
the optimization of various 13 functions including unimodal
functions, ridge functions and multimodal functions. It was
shown that the proposed method JADEadm was very efficient
compared with JADE.

In the future, we will investigate the effect of algorithm pa-
rameters σR in detail. Also, we will introduce the ε constrained
method into JADEadm to solve constrained optimization prob-
lems.
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Fig. 4. The graphs of µR2
and µR3

over the number of function evaluations.
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