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Abstract— Differential Evolution (DE) is an evolutionary
algorithm. DE has been successfully applied to optimization
problems including non-linear, non-differentiable, non-convex
and multimodal functions. There are several mutation strategies
such as the best and the rand strategy in DE. It is known
that the best strategy is suitable for unimodal problems and the
rand strategy is suitable for multimodal problems. However, the
landscape of a problem to be optimized is often unknown and
the landscape is changing dynamically while the search process
proceeds. In this study, we propose a new and simple method that
detects the modality of landscape being searched: unimodal or not
unimodal. In the method, some points on the line connecting the
centroid of search points and the best search point are sampled.
When the objective values of the sampled points are changed
decreasingly and then increasingly, it is thought that one valley
exists. If there exists only one valley, the landscape is unimodal
and a greedy strategy like the best strategy is adopted. Otherwise,
the rand strategy is adopted. Also, the sampled points realize
global search in the region spanned by all search points and
realize local search near the best search point. The effect of the
proposed method is shown by solving some benchmark problems.

Keywords-differential evolution; landscape modality; parame-
ter control; strategy selection

I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs). Differential
evolution (DE) is an EA by Storn and Price [1]. DE has been
successfully applied to optimization problems including non-
linear, non-differentiable, non-convex and multimodal func-
tions [2]–[4]. It has been shown that DE is a very fast and
robust algorithm.

There are several mutation strategies such as the best
strategy and the rand strategy in DE. It is known that the
best strategy can solve unimodal problems efficiently but the
strategy cannot solve multimodal problems stably and the
search by the strategy is sometimes trapped at a local optimal
solution. On the contrary, it is known that the rand strategy can
solve multimodal problems stably but the strategy cannot solve
unimodal problems efficiently. However, the landscape of a
problem to be optimized is often unknown and the landscape

is changing dynamically while the search process proceeds.
Thus, it is difficult to select a proper strategy.

In this study, we propose a new and simple method that
detects the modality of landscape being searched: unimodal
or not unimodal. In the method, some points on the line
connecting the centroid of search points and the best search
point are sampled. When the objective values of the sampled
points are changed decreasingly and then increasingly, it is
thought that one valley exists. If there exists only one valley,
the landscape is unimodal and a greedy strategy is adopted.
In the strategy, a base vector is selected from among top-
ranked search points. Thus, it is expected that the strategy
improves the efficiency of the search. If the number of valley
is not one, the rand strategy is adopted. In the strategy, a
base vector is selected randomly from whole search points.
Thus, it is expected that the strategy improves the divergence
of the search and prevents premature convergence. Also, the
sampled points realize global search in the region spanned
by all search points and realize local search near the best
search point. The effect of the proposed method is shown by
solving 13 benchmark problems including unimodal problems
and multimodal problems.

In Section II, optimization problems and DE are explained.
Related works are briefly reviewed in Section III. DE with
detecting landscape modality is proposed in Section IV. In
Section V, experimental results on some problems are shown.
Finally, conclusions are described in Section VI.

II. OPTIMIZATION BY DIFFERENTIAL EVOLUTION

A. Optimization Problems

In this study, the following optimization problem with lower
bound and upper bound constraints will be discussed.

minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is an D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.



B. Differential Evolution

DE is a stochastic direct search method using a population
or multiple search points.

In DE, initial individuals are randomly generated within
given search space and form an initial population. Each
individual contains D genes as decision variables. At each
generation or iteration, all individuals are selected as parents.
Each parent is processed as follows: The mutation operation
begins by choosing several individuals from the population
except for the parent in the processing. The first individual
is a base vector. All subsequent individuals are paired to
create difference vectors. The difference vectors are scaled by
a scaling factor F and added to the base vector. The resulting
vector, or a mutant vector, is then recombined with the parent.
The probability of recombination at an element is controlled
by a crossover rate CR. This crossover operation produces a
trial vector. Finally, for survivor selection, the trial vector is
accepted for the next generation if the trial vector is better
than the parent.

There are some variants of DE that have been proposed. The
variants are classified using the notation DE/base/num/cross
such as DE/rand/1/bin and DE/rand/1/exp.

“base” specifies a way of selecting an individual that
will form the base vector. For example, DE/rand selects an
individual for the base vector at random from the population.
DE/best selects the best individual in the population.

“num” specifies the number of difference vectors used to
perturb the base vector. In case of DE/rand/1, for example, for
each parent xi, three individuals xp1, xp2 and xp3 are chosen
randomly from the population without overlapping xi and each
other. A new vector, or a mutant vector x′ is generated by the
base vector xp1 and the difference vector xp2 − xp3, where
F is the scaling factor.

x′ = xp1 + F (xp2 − xp3) (2)

“cross” specifies the type of crossover that is used to create
a child. For example, ‘bin’ indicates that the crossover is con-
trolled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing
the crossover rate. Fig. 1 shows the binomial and exponential
crossover. A new child xchild is generated from the parent xi

and the mutant vector x′, where CR is a crossover rate.

C. The Algorithm of Differential Evolution

The algorithm of DE is as follows:
Step1 Initialization of a population. Initial N individuals

P = {xi, i = 1, 2, · · · , N} are generated randomly
in search space and form an initial population.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uation FEmax, the algorithm is terminated.

Step3 DE operations. Each individual xi is selected as a
parent. If all individuals are selected, go to Step4. A
mutant vector x′ is generated according to Eq. (2).

binomial crossover DE/·/·/bin
jrand=randint(1,D);
for(k=1; k ≤ D; k++) {

if(k == jrand || u(0, 1) < CR) xchild
k =x′

k;
else xchild

k =xi
k;

}
exponential crossover DE/·/·/exp

k=1; j=randint(1,D);
do {

xchild
j =x′

j;
k=k+1; j=(j + 1)%D;

} while(k ≤ D && u(0, 1) < CR);
while(k ≤ D) {

xchild
j =xi

j;
k=k+1; j=(j + 1)%D;

}

Fig. 1. Binomial and exponential crossover operation, where randint(1,D)
generates an integer randomly from [1, D] and u(l, r) is a uniform random
number generator in [l, r].

A trial vector (child) is generated from the parent xi

and the mutant vector x′ using a crossover operation
shown in Fig. 1. If the child is better than or equal
to the parent, or the DE operation is succeeded, the
child survives. Otherwise the parent survives. Go
back to Step3 and the next individual is selected as
a parent.

Step4 Survivor selection (generation change). The popula-
tion is organized by the survivors. Go back to Step2.

Fig. 2 shows a pseudo-code of DE/rand/1.

DE/rand/1()
{
// Initialize an population
P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
for(i=1; i ≤ N; i++) {

// DE operation
xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6∈ {i, p1});
xp3=Randomly selected from P(p3 6∈ {i, p1, p2});
x′=xp1+F (xp2 − xp3);
xchild=trial vector is generated from

xi and x′ by the crossover operation;
// Survivor selection

if
(
f(xchild)≤ f(xi)

)
zi=xchild;

else zi=xi;
FE=FE+1;

}
P={zi, i = 1, 2, · · · , N};

}
}

Fig. 2. The pseudo-code of DE, FE is the number of function evaluations.

III. RELATED WORKS

The performance of DE is affected by control parameters
such as the scaling factor F , the crossover rate CR and the
population size N , and by mutation strategies such as the rand
strategy and the best strategy. Many researchers have been



studying on controlling the parameters and the strategies. The
methods of the control can be classified into some categories
as follows:
(1) selection-based control: Strategies and parameter values are
selected regardless of current search state. CoDE(composite
DE) [5] generates three trial vectors using three strategies with
randomly selected parameter values from parameter candidate
sets and the best trial vector will head to the survivor selection.
(2) observation-based control: The current search state is
observed, proper parameter values are inferred according to
the observation, and parameters and/or strategies are dynam-
ically controlled. FADE(Fuzzy Adaptive DE) [6] observes
the movement of search points and the change of function
values between successive generations, and controls F and
CR. DESFC(DE with Speciation and Fuzzy Clustering) [7]
adopts fuzzy clustering, observes partition entropy of search
points, and controls CR and the mutation strategies between
the rand and the species-best strategy.
(3) success-based control: It is recognized as a success case
when a better search point than the parent is generated. The
parameters and/or strategies are adjusted so that the values in
the success cases are frequently used. It is thought that the
self-adaptation, where parameters are contained in individuals
and are evolved by applying evolutionary operators to the
parameters, is included in this category. DESAP(Differential
Evolution with Self-Adapting Populations) [8] controls F,CR
and N self-adaptively. SaDE(Self-adaptive DE) [9] controls
the selection probability of the mutation strategies according
to the success rates and controls the mean value of CR for
each strategy according to the mean value in success case.
jDE(self-adaptive DE algorithm) [10] controls F and CR self-
adaptively. JADE(adaptive DE with optional external archive)
[11] and MDE pBX(modified DE with p-best crossover) [12]
control the mean and power mean values of F and CR
according to the mean values in success cases.

In the category (1), useful knowledge to improve the search
efficiency is ignored. In the category (2), it is difficult to
select proper type of observation which is independent of the
optimization problem and its scale. In the category (3), when
a new good search point is found near the parent, parameters
are adjusted to the direction of convergence. In problems with
ridge landscape or multimodal landscape, where good search
points exist in small region, parameters are tuned for small
success and big success will be missed. Thus, search process
would be trapped at a local optimal solution.

In this study, we propose new observation-based control in
the category 1). In the control, F and CR are tuned and a
strategy is selected between a greedy strategy and the rand
strategy according to the landscape modality which is inferred
by a kind of line search.

IV. DIFFERENTIAL EVOLUTION WITH DETECTING
LANDSCAPE MODALITY

In this section, LMDE (DE with detecting Landscape
Modality) is proposed.

A. Detecting Landscape Modality

In this study, whether the search points are in unimodal
landscape or not is detected using the current search points
P = {xi|i = 1, 2, · · · , N}. The objective values are examined
along the following line, which connects the centroid of search
points xg and the best search point xb.

x = xg + λ(xb − xg) (3)

xg =
1

N

N∑
i=1

xi (4)

xb = argmin
i

f(xi) (5)

where λ is a parameter for deciding the position of a point on
the line. The range of the search points [xmin,xmax] can be
given as follows:

xmin
j = min

i
xi
j (6)

xmax
j = max

i
xi
j (7)

The range of the λ, [λmin, λmax] satisfies the following
condition:

xmin
j ≤ xg

j + λ(xb
j − xg

j ) ≤ xmax
j (8)

Thus, if (xb
j − xg

j ) is positive, the range of the λ is given by:

λmin = max
j

xmin
j − xg

j

xb
j − xg

j

(9)

λmax = min
j

xmax
j − xg

j

xb
j − xg

j

(10)

If (xb
j − xg

j ) is negative, xmin
j and xmax

j in the equations are
exchanged.

In order to decide M sampling points {xk|k =
1, 2, · · · ,M}, λk is given as follows:

λk = λmin +
λmax − λmin

M − 1
(k − 1) (11)

xk = xg + λk(x
b − xg) (12)

Figure 3 shows an example of the sampling, where search
points are shown by black circles, the centroid is shown by a
white circle, sampling points are shown by triangles in case
of M = 6.

In the sequence {f(xk)|k = 1, 2, · · · ,M}, hill-valley
relation is examined. For each point, the function dir is
introduced in order to judge whether the change is increasing
or decreasing:

dir(xk) =

 1 (f(xk+1) > f(xk))
−1 (f(xk+1) < f(xk))

dir(xk−1) (otherwise)
(13)

If the value of dir changed from -1 to 1 only once, it is
thought that one valley exists and the landscape is unimodal.
Otherwise, the landscape is not unimodal. Figure 4 shows an
example of detecting unimodal landscape, where the objective
values are shown by the function of λ.
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If the best value of f(xk) is better than f(xb), xb is
replaced by the xk.

xb =

{
argmink f(xk) (mink f(xk) < f(xb))
xb (otherwise)

(14)

It is thought that the sampling performs global search in the
region spanned by all search points and also perform local
search near the best search point.

B. Algorithm of LMDE

Fig. 5 shows the pseudo-code of LMDE. Some modifica-
tions to standard DE are applied for proposed method:

1) Dynamic strategy selection and parameter selection are
performed according to landscape modality. If current
landscape is unimodal, a greedy strategy, which is called
as the pbest strategy, is adopted. In the strategy, a base
vector is selected from top p ranking individuals, where
the rank of the base vector is in [1, pN ]. Also, the initial
scaling factor F0 is decreased by 0.1 in order to converge
search points to a valley fast. If current landscape is
not unimodal, the rand strategy is adopted. In order to
generate a crossover rate CR, the base rate CR0 is
perturbed by less than a small value 0.1 randomly.

LMDE/{pbest,rand}/1/exp()
{
isGreedy=0; F=F0; FE=0;

// Initialize a population
P=N individuals generated randomly in S;
FE=FE+N;
for(t=1; FE ≤ FEmax; t++) {
if(t%Td==Td − 1) {

Detecting landscape modality;
FE=FE+M;
if(landscape is unimodal) {
isGreedy=1; F=F0-0.1;

}
else {
isGreedy=0; F=F0;

}
}
CR=(CR0 − 0.05)+0.1u(0, 1);
for(i=1; i ≤ N; i++) {

// DE/rand/1/exp operation
if(isGreedy)

xp1=Randomly selected from top p ranking in P;
else

xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6∈ {i, p1});
xp3=Randomly selected from P(p3 6∈ {i, p1, p2});
x′=xp1+F (xp2 − xp3 );
xc=trial vector is generated from

xi and x′ by exponential crossover;
FE=FE+1;

// Survivor selection
if
(
f(xc)≤ f(xi)

)
xi=xc;

}
}

}

Fig. 5. The pseudo-code of LMDE where Td is the term of detecting
landscape modality and p is the ratio of top-ranking individuals.

2) Continuous generation model [13] is adopted. Usually
discrete generation model is adopted in DE and when
the child is better than the parent, the child survives in
the next generation. In this study, when the child is better
than the parent, the parent is immediately replaced by
the child. It is thought that the continuous generation
model improves efficiency because the model can use
newer information than the discrete model.

3) Reflecting back out-of-bound solutions [14] is adopted.
In order to keep bound constraints, an operation to move
a point outside of the search space S into the inside
of S is required. There are some ways to realize the
movement: generating solutions again, cutting off the
solutions on the boundary, and reflecting points back to
the inside of the boundary [15]. In this study, reflecting
back is used:

xij =


li + (li − xij)−

⌊
li−xij

ui−li

⌋
(ui − li) (xij < li)

ui − (xij − ui) +

⌊
xij−ui

ui−li

⌋
(ui − li) (xij > ui)

xij (otherwise)
(15)

where bzc is the maximum integer smaller than or equal
to z. This operation is applied when a new point is



generated by DE operations.

V. SOLVING OPTIMIZATION PROBLEMS

In this paper, well-known thirteen benchmark problems are
solved.

A. Test Problems and Experimental Conditions
The 13 scalable benchmark functions are shown in Table I

[11]. All functions have an optimal value 0. Some characteris-
tics are briefly summarized as follows: Functions f1 to f4 are
continuous unimodal functions. The function f5 is Rosenbrock
function which is unimodal for 2- and 3-dimensions but may
have multiple minima in high dimension cases [16]. The
function f6 is a discontinuous step function, and f7 is a noisy
quartic function. Functions f8 to f13 are multimodal functions
and the number of their local minima increases exponentially
with the problem dimension [17].

TABLE I
TEST FUNCTIONS OF DIMENSION D. THESE ARE SPHERE, SCHWEFEL
2.22, SCHWEFEL 1.2, SCHWEFEL 2.21, ROSENBROCK, STEP, NOISY

QUARTIC, SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK, AND TWO
PENALIZED FUNCTIONS, RESPECTIVELY [18]

Test functions Bound constraints

f1(x) =
∑D

i=1
x2
i [−100, 100]D

f2(x) =
∑D

i=1
|xi|+

∏D

i=1
|xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i

j=1
xj

)2

[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1
bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1
ix4

i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1
−xi sin

√
|xi|

+D · 418.98288727243369
[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D

i=1
x2
i

)
− exp

(
1
D

∑D

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D

i=1
x2
i −

∏D

i=1
cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D
[10 sin2(πy1) +

∑D−1

i=1
(yi − 1)2

{1+ 10 sin2(πyi+1)}+ (yD − 1)2]

+
∑D

i=1
u(xi, 10, 100, 4)

where yi = 1+ 1
4
(xi +1) and u(xi, a, k,m) ={

k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1)+
∑D−1

i=1
(xi−1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}] +
∑D

i=1
u(xi, 5, 100, 4)

[−50, 50]D

Independent 50 runs are performed for 13 problems. The
dimension of problems is 30 (D=30). Each run stops when the

number of function evaluations (FEs) exceeds the maximum
number of evaluations FEmax.

B. Experimental Results on the Proposed Method

The control parameters for LMDE are as follows: The
population size N=50, the initial scaling factor F0=0.7, the
base crossover rate CR0=0.9, the term of detecting landscape
modality Td=20, the number of sampling points is same as
the population size or M=N , and the ratio of top-ranking
ratio p=0.2. The parameter for standard DEs are as follows:
The population size N=50, the scaling factor F=0.7 and the
crossover rate CR=0.9. These settings showed very good and
stable performance in constrained optimization [19].

Table II shows the experimental results on LMDE and
standard DEs, or DE/rand/1/exp and DE/rand/1/bin. The mean
value and the standard deviation of best objective value in each
run are shown for each function. The best result among algo-
rithms is highlighted using bold face fonts. Apparently, LMDE
found better solutions than standard DEs did in all problems.
In standard DEs, DE/rand/1/exp found better solutions than
DE/rand/1/bin did in all problems except for f7.

Figures 6 to 16 show the change of best objective value
found and the number of changes in dir values of Eq. (13) over
the number of FEs within 200,000 evaluations. Apparently,
proposed method can find better objective values faster than
the standard DEs in all problems. Also, the number of dir
changes is almost 1 in unimodal functions f1 to f4.
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TABLE II
EXPERIMENTAL RESULTS ON LMDE AND STANDARD DES. MEAN VALUE ± STANDARD DEVIATION IN 50 RUNS ARE SHOWN

FEmax LMDE DE/rand/1/exp DE/rand/1/bin
f1 150,000 3.79591e-61 ± 4.837e-61 1.90493e-19 ± 1.198e-19 5.83076e-08 ± 5.088e-08
f2 200,000 1.09424e-42 ± 9.846e-43 8.86812e-16 ± 3.194e-16 5.86097e-06 ± 3.192e-06
f3 500,000 1.48640e-70 ± 6.230e-70 6.82357e-08 ± 3.063e-08 5.00996e-07 ± 6.499e-07
f4 500,000 1.57039e-34 ± 5.342e-34 2.53499e-07 ± 6.265e-08 1.58056e-02 ± 2.626e-02
f5 300,000 0.00000e+00 ± 0.000e+00 2.45220e-14 ± 2.978e-14 1.00177e+00 ± 7.345e-01

2,000,000 0.00000e+00 ± 0.000e+00 0.00000e+00 ± 0.000e+00 0.00000e+00 ± 0.000e+00
f6 10,000 7.64000e+00 ± 3.974e+00 1.92612e+03 ± 3.381e+02 1.25022e+04 ± 3.504e+03

150,000 0.00000e+00 ± 0.000e+00 0.00000e+00 ± 0.000e+00 0.00000e+00 ± 0.000e+00
f7 300,000 4.63046e-04 ± 2.336e-04 9.68155e-03 ± 2.274e-03 9.53495e-03 ± 2.927e-03
f8 100,000 0.00000e+00 ± 0.000e+00 2.39661e-09 ± 2.649e-09 3.62890e+03 ± 1.598e+03

900,000 0.00000e+00 ± 0.000e+00 0.00000e+00 ± 0.000e+00 1.05016e+02 ± 1.561e+02
f9 100,000 1.43683e+01 ± 3.363e+00 1.45655e+01 ± 3.767e+00 1.64190e+02 ± 2.584e+01

500,000 0.00000e+00 ± 0.000e+00 1.98992e-02 ± 1.393e-01 1.82250e+01 ± 5.894e+00
f10 50,000 6.52192e-09 ± 6.471e-09 1.04405e-02 ± 2.011e-03 2.08414e+00 ± 4.564e-01

200,000 0.00000e+00 ± 0.000e+00 2.27729e-14 ± 3.734e-15 6.78799e-07 ± 3.623e-07
f11 50,000 2.62380e-10 ± 1.830e-09 1.87902e-02 ± 1.659e-02 1.07438e+00 ± 3.875e-02

300,000 0.00000e+00 ± 0.000e+00 0.00000e+00 ± 0.000e+00 3.45066e-04 ± 1.708e-03
f12 50,000 3.72164e-17 ± 7.188e-17 7.04676e-05 ± 2.548e-05 3.59688e+00 ± 1.940e+00

150,000 1.57054e-32 ± 0.000e+00 1.45567e-20 ± 9.382e-21 4.19561e-08 ± 8.577e-08
f13 50,000 3.16981e-14 ± 1.098e-13 3.59667e-04 ± 1.194e-04 7.34430e+00 ± 4.543e+00

150,000 1.34978e-32 ± 0.000e+00 7.04252e-20 ± 4.546e-20 1.28632e-07 ± 1.248e-07
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Fig. 8. The graph of f3
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Fig. 9. The graph of f4

C. Comparison with Other Methods

Table III compares LMDE with other methods including
JADE, jDE, SaDE, DE/rand/1/bin and PSO. Results except
for LMDE are taken from [11]. The control parameters are as
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Fig. 10. The graph of f5

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 50000  100000  150000  200000
 0

 1

 2

 3

 4

O
b

je
c
ti
v
e

 v
a

lu
e

#
c
h

a
n

g
e

s

Evaluations

LMDE
DE/exp
DE/bin

#changes

Fig. 11. The graph of f6

follows: The population size N=100 for DEs, and F=0.5 and
CR=0.9 for DE/rand/1/bin.

LMDE attained the best results among all methods in 7
problems f1, f2, f5, f7, f8, f11 and f12. Also, LMDE attained
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Fig. 12. The graph of f7
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Fig. 13. The graph of f8
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Fig. 14. The graph of f9
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Fig. 15. The graph of f10
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Fig. 16. The graph of f11
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Fig. 17. The graph of f12
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Fig. 18. The graph of f13

the best final results in 2 problems f10 and f13. LMDE
outperformed JADE without archive in 9 problems and in 2
problems for final results. LMDE outperformed JADE with
archive in 7 problems and in 2 problems for final results.
LMDE outperformed jDE, SaDE, DE/rand/1/bin and PSO in
all problems. Thus, it is thought that LMDE is effective to
various problems.

VI. CONCLUSION

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve nonlinear optimization
problems. In this study, we proposed the landscape modality
detection and LMDE algorithm to select a proper strategy and



TABLE III
EXPERIMENTAL RESULTS ON LMDE AND OTHER DES. MEAN VALUES AND STANDARD DEVIATIONS IN 50 RUNS ARE SHOWN

FEmax LMDE JADE w/o archive JADE with archive jDE SaDE DE/rand/1/bin PSO
f1 150,000 3.8e-61 (4.8e-61) 1.8e-60 (8.4e-60) 1.3e-54 (9.2e-54) 2.5e-28 (3.5e-28) 4.5e-20 (6.9e-20) 9.8e-14 (8.4e-14) 9.6e-42 (2.7e-41)
f2 200,000 1.1e-42 (9.8e-43) 1.8e-25 (8.8e-25) 3.9e-22 (2.7e-21) 1.5e-23 (1.0e-23) 1.9e-14 (1.05e-14) 1.6e-09 (1.1e-09) 9.3e-21 (6.3e-20)
f3 500,000 1.5e-70 (6.2e-70) 5.7e-61 (2.7e-60) 6.0e-87 (1.9e-86) 5.2e-14 (1.1e-13) 9.0e-37 (5.43e-36) 6.6e-11 (8.8e-11) 2.5e-19 (3.9e-19)
f4 500,000 1.5e-34 (5.3e-34) 8.2e-24 (4.0e-23) 4.3e-66 (1.2e-65) 1.4e-15 (1.0e-15) 7.4e-11 (1.82e-10) 4.2e-01 (1.1e+00) 4.4e-14 (9.3e-14)
f5 300,000 0.0e+00 (0.0e+00) 8.0e-02 (5.6e-01) 3.2e-01 (1.1e+00) 1.3e+01 (1.4e+01) 2.1e+01 (7.8e+00) 2.1e+00 (1.5e+00) 2.5e+01 (3.2e+01)

2,000,000 0.0e+00 (0.0e+00) 8.0e-02 (5.6e-01) 3.2e-01 (1.1e+00) 8.0e-02 (5.6e-01) 1.8e+01 (6.7e+00) 8.0e-02 (5.6e-01) 1.7e+01 (2.3e+01)
f6 10,000 7.6e+00 (4.0e+00) 2.9e+00 (1.2e+00) 5.6e+00 (1.6e+00) 1.0e+03 (2.2e+02) 9.3e+02 (1.8e+02) 4.7e+03 (1.1e+03) 4.5e+01 (2.4e+01)

150,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 8.0e-02 (2.7e-01)
f7 300,000 4.6e-04 (2.3e-04) 6.4e-04 (2.5e-04) 6.8e-04 (2.5e-04) 3.3e-03 (8.5e-04) 4.8e-03 (1.2e-03) 4.7e-03 (1.2e-03) 2.5e-03 (1.4e-03)
f8 100,000 0.0e+00 (0.0e+00) 3.3e-05 (2.3e-05) 7.1e+00 (2.8e+01) 7.9e-11 (1.3e-10) 4.7e+00 (3.3e+01) 5.9e+03 (1.1e+03) 2.4e+03 (6.7e+02)

900,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 7.1e+00 (2.8e+01) 0.0e+00 (0.0e+00) 4.7e+00 (3.3e+01) 5.7e+01 (7.6e+01) 2.4e+03 (6.7e+02)
f9 100,000 1.4e+01 (3.4e+00) 1.0e-04 (6.0e-05) 1.4e-04 (6.5e-05) 1.5e-04 (2.0e-04) 1.2e-03 (6.5e-04) 1.8e+02 (1.3e+01) 5.2e+01 (1.6e+01)

500,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 7.1e+01 (2.1e+01) 5.2e+01 (1.6e+01)
f10 50,000 6.5e-09 (6.5e-09) 8.2e-10 (6.9e-10) 3.0e-09 (2.2e-09) 3.5e-04 (1.0e-04) 2.7e-03 (5.1e-04) 1.1e-01 (3.9e-02) 4.6e-01 (6.6e-01)

200,000 0.0e+00 (0.0e+00) 4.4e-15 (0.0e+00) 4.4e-15 (0.0e+00) 4.7e-15 (9.6e-16) 4.3e-14 (2.6e-14) 9.7e-11 (5.0e-11) 4.6e-01 (6.6e-01)
f11 50,000 2.6e-10 (1.8e-09) 9.9e-08 (6.0e-07) 2.0e-04 (1.4e-03) 1.9e-05 (5.8e-05) 7.8e-04 (1.2e-03) 2.0e-01 (1.1e-01) 1.3e-02 (1.7e-02)

300,000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 2.0e-04 (1.4e-03) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00) 1.1e-02 (1.6e-02)
f12 50,000 3.7e-17 (7.2e-17) 4.6e-17 (1.9e-16) 3.8e-16 (8.3e-16) 1.6e-07 (1.5e-07) 1.9e-05 (9.2e-06) 1.2e-02 (1.0e-02) 1.9e-01 (3.9e-01)

150,000 1.6e-32 (0.0e+00) 1.6e-32 (5.5e-48) 1.6e-32 (5.5e-48) 2.6e-29 (7.5e-29) 1.2e-19 (2.0e-19) 1.1e-14 (1.0e-14) 1.9e-01 (3.9e-01)
f13 50,000 3.2e-14 (1.1e-13) 2.0e-16 (6.5e-16) 1.2e-15 (2.8e-15) 1.5e-06 (9.8e-07) 6.1e-05 (2.0e-05) 7.5e-02 (3.8e-02) 2.9e-03 (4.8e-03)

150,000 1.3e-32 (0.0e+00) 1.4e-32 (1.1e-47) 1.4e-32 (1.1e-47) 1.9e-28 (2.2e-28) 1.7e-19 (2.4e-19) 7.5e-14 (4.8e-14) 2.9e-03 (4.8e-03)

to adjust control parameters. It was shown that LMDE can
improve the search efficiency compared with standard DEs in
all 13 problems. Also, it was shown that LMDE outperformed
jDE, SaDE and PSO in all 13 problems, and JADE in 7
problems and 2 problems for final results. Thus, it is thought
that LMDE is a very efficient optimization algorithm compared
with other methods.

In the future, we will design more dynamic control of
parameter values for LMDE.
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