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Abstract—In this study, the performance of Differential Evo-
lution with landscape modality detection and a diversity archive
(LMDEa) is reported on the set of benchmark functions pro-
vided for the CEC2012 Special Session on Large Scale Global
Optimization. In Differential Evolution (DE), large population
size, which is much larger than the number of decision variables
in problem to be solved, is adopted in order to keep the diversity
of search. However, it is difficult to adopt such large size to solve
large scaled optimization problems because the population size
will become too large and the search efficiency will degrade. In
this study, we propose to solve large scale optimization problems
using small population size and a large archive for diversity.
Also, we propose simple control of scaling factor by observing
landscape modality of search points in order to keep diversity.
The landscape of a problem to be optimized is often unknown
and the landscape is changing dynamically while the search
process proceeds. In LMDEa, some points on a line connecting
the centroid of search points and a search point are sampled.
When the objective values of the sampled points are changed
decreasingly and then increasingly, it is thought that one valley
exists. If there exists only one valley, the landscape is unimodal
and small scaling factor is adopted. Otherwise, large scaling
factor is adopted. Also, the sampled points realize global search
in the region spanned by all search points and realize local search
near the best search point. The effect of the proposed method is
shown by solving the benchmark functions.

Keywords-differential evolution; large scale optimization; land-
scape modality; parameter control

I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs). Differential
evolution (DE) is a newly proposed EA by Storn and Price
[1]. DE has been successfully applied to optimization prob-
lems including non-linear, non-differentiable, non-convex and
multimodal functions [2]–[4]. It has been shown that DE is a
very fast and robust algorithm.

In EAs, large population size is effective to keep the
diversity of search points, although the efficiency of evolution
becomes low. In DE, large population size, which is much
larger than the number of decision variables in problem to
be solved, is usually adopted in order to keep the diversity.
However, in large scaled optimization, it is difficult to adopt
such large size because the size becomes too large and the

search efficiency will degrade. If small population size is
adopted, it needs to adopt methods for keeping the diversity.
Some methods are proposed to improve the diversity: (1) using
an external archive [5], or a diversity archive [6] in addition to
the population, and (2) controlling algorithm parameters such
as the scaling factor and the crossover rate properly.

In this study, we propose Differential Evolution with Land-
scape Modality detection and a diversity Archive (LMDEa) to
solve large scale optimization problems using small population
size. In order to keep the diversity, an archive, which is updated
using defeated individuals in survivor selection of DE, is
utilized in addition to the population.

A proper value of the scaling factor and also the crossover
rate depends on the landscape of a problem to be optimized.
However, the landscape of the problem is often unknown
and the landscape is changing dynamically while the search
process proceeds. Thus, it is difficult to select the proper
value. In study, we propose simple control of scaling factor by
detecting the landscape modality of search points: unimodal
or not unimodal. In LMDEa, some points on a line connecting
the centroid of search points and a search point are sampled.
When the objective values of the sampled points are changed
decreasingly and then increasingly, it is thought that one
valley exists. If there exists only one valley, the landscape
is unimodal. Otherwise, the landscape is not unimodal, or is
multimodal. If the landscape is unimodal, small scaling factor
is adopted. It is expected that the search points will converge
to the valley of the unimodal landscape fast and the efficiency
of the search is improved. If the landscape is not unimodal,
large scaling factor is adopt. It is expected that the divergence
of the search will be retained and premature convergence will
be prevented. Also, the sampled points realize global search in
the region spanned by all search points and realize local search
near the best search point. The effect of the proposed method is
shown by solving the benchmark functions including unimodal
problems and multimodal problems in the CEC2012 Special
Session on Large Scale Global Optimization [7].

In Section II, optimization problems and DE are explained.
Related works are briefly reviewed in Section III. DE with
landscape modality detection and a diversity archive is pro-
posed in Section IV. In Section V, experimental results on
some problems are shown. Finally, conclusions are described



in Section VI.

II. OPTIMIZATION BY DIFFERENTIAL EVOLUTION

A. Optimization Problems

In this study, the following optimization problem with lower
bound and upper bound constraints will be discussed.

minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is an D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.

B. Differential Evolution

DE is a stochastic direct search method using a population
or multiple search points.

In DE, initial individuals are randomly generated within
given search space and form an initial population. Each
individual contains D genes as decision variables. At each
generation or iteration, all individuals are selected as parents.
Each parent is processed as follows: The mutation operation
begins by choosing several individuals from the population
except for the parent in the processing. The first individual
is a base vector. All subsequent individuals are paired to
create difference vectors. The difference vectors are scaled by
a scaling factor F and added to the base vector. The resulting
vector, or a mutant vector, is then recombined with the parent.
The probability of recombination at an element is controlled
by a crossover rate CR. This crossover operation produces a
trial vector. Finally, for survivor selection, the trial vector is
accepted for the next generation if the trial vector is better
than the parent.

There are some variants of DE that have been proposed. The
variants are classified using the notation DE/base/num/cross
such as DE/rand/1/bin and DE/rand/1/exp.

“base” specifies a way of selecting an individual that
will form the base vector. For example, DE/rand selects an
individual for the base vector at random from the population.
DE/best selects the best individual in the population.

“num” specifies the number of difference vectors used to
perturb the base vector. In case of DE/rand/1, for example, for
each parent xi, three individuals xp1, xp2 and xp3 are chosen
randomly from the population without overlapping xi and each
other. A new vector, or a mutant vector x′ is generated by the
base vector xp1 and the difference vector xp2 − xp3, where
F is the scaling factor.

x′ = xp1 + F (xp2 − xp3) (2)

“cross” specifies the type of crossover that is used to create
a child. For example, ‘bin’ indicates that the crossover is con-
trolled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing

the crossover rate. Fig. 1 shows the binomial and exponential
crossover. A new child xchild is generated from the parent xi

and the mutant vector x′, where CR is a crossover rate.

binomial crossover DE/·/·/bin
jrand=randint(1,D);
for(k=1; k ≤ D; k++) {

if(k == jrand || u(0, 1) < CR) xchild
k =x′

k;
else xchild

k =xi
k;

}
exponential crossover DE/·/·/exp

k=1; j=randint(1,D);
do {

xchild
j =x′

j;
k=k+1; j=j + 1; if(j > D) j=1;

} while(k ≤ D && u(0, 1) < CR);
while(k ≤ D) {

xchild
j =xi

j;
k=k+1; j=j + 1; if(j > D) j=1;

}

Fig. 1. Binomial and exponential crossover operation, where randint(1,D)
generates an integer randomly from [1, D] and u(l, r) is a uniform random
number generator in [l, r].

C. The Algorithm of Differential Evolution

The algorithm of DE is as follows:
Step1 Initialization of a population. Initial N individuals

P = {xi, i = 1, 2, · · · , N} are generated randomly
in search space and form an initial population.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uation FEmax, the algorithm is terminated.

Step3 DE operations. Each individual xi is selected as a
parent. If all individuals are selected, go to Step4. A
mutant vector x′ is generated according to Eq. (2).
A trial vector (child) is generated from the parent xi

and the mutant vector x′ using a crossover operation
shown in Fig. 1. If the child is better than or equal
to the parent, or the DE operation is succeeded, the
child survives. Otherwise the parent survives. Go
back to Step3 and the next individual is selected as
a parent.

Step4 Survivor selection (generation change). The popula-
tion is organized by the survivors. Go back to Step2.

Fig. 2 shows a pseudo-code of DE/rand/1.

III. RELATED WORKS

The performance of DE is affected by control parameters
such as the scaling factor F , the crossover rate CR and the
population size N , and by mutation strategies such as the rand
strategy and the best strategy. Many researchers have been
studying on controlling the parameters and the strategies. The
methods of the control can be classified into two categories:
observation-based and success-based control.

1) observation-based control: The current search state is
observed, proper parameter values are inferred according
to the observation, and parameters and/or strategies are



DE/rand/1()
{
// Initialize an population
P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
for(i=1; i ≤ N; i++) {

// DE operation
xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6= i 6= p1);
xp3=Randomly selected from P(p3 6= i 6= p1 6= p2);
x′=xp1+F (xp2 − xp3);
xchild=trial vector is generated from

xi and x′ by the crossover operation;
// Survivor selection

if
(
f(xchild)≤ f(xi)

)
zi=xchild;

else zi=xi;
FE=FE+1;

}
P={zi, i = 1, 2, · · · , N};

}
}

Fig. 2. The pseudo-code of DE, FE is the number of function evaluations.

dynamically controlled. FADE(Fuzzy Adaptive DE) [8]
observes the movement of search points and the change
of function values between successive generations, and
controls F and CR. DESFC(DE with Speciation and
Fuzzy Clustering) [9] adopts fuzzy clustering, observes
partition entropy of search points, and controls CR and
the mutation strategies between the rand and the species-
best strategy.

2) success-based control: It is recognized as a success case
when a better search point than the parent is generated.
The parameters and/or strategies are adjusted so that the
values in the success cases are frequently used. It is
thought that the self-adaptation, where parameters are
contained in individuals and are evolved by applying
evolutionary operators to the parameters, is included in
this category. DESAP(Differential Evolution with Self-
Adapting Populations) [10] controls F,CR and N self-
adaptively. SaDE(Self-adaptive DE) [11] controls the
mean value of CR according to the mean value in
success cases and controls the selection probability of
the mutation strategies according to the success rates.
jDE(self-adaptive DE algorithm) [12] controls F and
CR self-adaptively. JADE(adaptive DE with optional
external archive) [5] controls the mean values of F and
CR according to the mean values in success cases.

In the category 1), it is difficult to select proper type of
observation which is independent of the optimization problem
and its scale. In the category 2), when a new good search
point is found near the parent, parameters are adjusted to the
direction of convergence. In problems with ridge landscape
or multimodal landscape, where good search points exist in
small region, parameters are tuned for small success and big
success will be missed. Thus, search process would be trapped
at a local optimal solution.

In this study, we propose new observation-based control in
the category 1). In the control, F is selected according to the
landscape modality which is inferred by a kind of line search.

IV. DIFFERENTIAL EVOLUTION WITH DETECTING
LANDSCAPE MODALITY

In this section, landscape modality detection is explained.

A. Detecting Landscape Modality
In this study, whether the search points are in unimodal

landscape or not is detected using the current search points
P = {xi|i = 1, 2, · · · , N}. The objective values are examined
along the following line, which connects the centroid of search
points xg and the best search point xb.

x = xg + λ(xb − xg) (3)

xg =
1

N

N∑
i=1

xi (4)

xb = argmin
i

f(xi) (5)

where λ is a parameter for deciding the position of a point on
the line. The range of the search points [xmin,xmax] can be
given as follows:

xmin
j = min

i
xi
j (6)

xmax
j = max

i
xi
j (7)

The range of the λ, [λmin, λmax] satisfies the following
condition:

xmin
j ≤ xg

j + λ(xb
j − xg

j ) ≤ xmax
j (8)

Thus, the range of the λ is given by the following:

λmin = max
j

xmin
j − xg

j

xb
j − xg

j

(9)

λmax = min
j

xmax
j − xg

j

xb
j − xg

j

(10)

If (xb
j − xg

j ) is negative, xmin
j and xmax

j in the equations are
exchanged.

In order to decide M sampling points {xk|k =
1, 2, · · · ,M}, λk is given as follows:

λk = λmin +
λmax − λmin

M − 1
(k − 1) (11)

xk = xg + λk(x
b − xg) (12)

Figure 3 shows an example of the sampling, where search
points are shown by black circles, the centroid is shown by a
white circle, sampling points are shown by triangles in case
of M = 6.

In the sequence {f(xk)|k = 1, 2, · · · ,M}, hill-valley
relation is examined. For each point, the function dir is
introduced in order to judge whether the change is increasing
or decreasing.

dir(xk) =

 1 (f(xk+1) > f(xk))
−1 (f(xk+1) < f(xk))

dir(xk−1) (otherwise)
(13)
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Fig. 3. An example of sampling for detecting landscape modality

If the value of dir changed from -1 to 1 only once, it is
thought that one valley exists and the landscape is unimodal.
Otherwise, the landscape is not unimodal. Figure 4 shows an
example of detecting unimodal landscape, where the objective
values are shown by the function of λ.
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Fig. 4. An example of detecting unimodal landscape

If the best value of f(xk) is better than f(xb), xb is
replaced by the xk.

xb =

{
argmink f(xk) (mink f(xk) < f(xb))
xb (otherwise)

(14)

It is thought that the sampling performs global search in the
region spanned by all search points and also perform local
search near the best search point.

B. Algorithm of LMDEa

Fig. 5 shows the pseudo-code of LMDEa.
Some modifications to standard DE are applied for proposed

method as follows:
1) A diversity archive A with the maximum size NA is

introduced. Defeated trial vectors in survivor selection
are added to the archive. If the archive size exceeds NA,
a randomly selected element is deleted. In the mutation

LMDEa/rand/1/exp+bin()
{
F=F0; FE=0; A=φ;
// Initialize a population
P=N individuals generated randomly in S;
FE=FE+N;
for(t=1; FE ≤ FEmax; t++) {
if(t%Td==Td − 1) {

Detecting landscape modality;
FE=FE+M;
if(landscape is unimodal) F=F0;
else F=F0+0.2;

}
for(i=1; i ≤ N; i++)
for(k=1; k ≤ 2; k++) {
if(k==1) {

// DE/rand/1/exp operation
exponential crossover is selected;
CR=0.8+0.2u(0, 1);

}
else {

// DE/rand/1/bin operation
binomial crossover is selected;
CR=u(0, 1);

}
xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6=∈ {i, p1});
xp3=Randomly selected from P ∪A(p3 6∈ {p1, p2});
x′=xp1+F (xp2 − xp3);
xchild=trial vector is generated from xi and x′

by the selected crossover operation;
FE=FE+1;

// Survivor selection
if
(
f(xchild)≤ f(xi)

)
{

xi=xchild;
break;

}
else {
if(|A| < NA) A=A ∪ {xchild};
else replace a random element in A with xchild;

}
}

}
}

}

Fig. 5. The pseudo-code of LMDEa where A is a diversity archive, NA is
the maximum size of the archive and Td is the term of detecting landscape
modality.

operation, the second vector xp3 in a difference vector
is selected from the population and the archive (P ∪A).

2) Dynamic parameter selection are performed according
to landscape modality. If current landscape is unimodal,
the base scaling factor F0 is adopted as F . Otherwise,
F = F0 + 0.2.

3) Two types of crossover operations, exponential and bi-
nomial crossover operations, are adopted: DE/rand/1/exp
operation with a random crossover rate in [0.8,1] is used
and a new child is generated (k = 1). If the new one is
not better than the parent, DE/rand/1/bin operation with
a random crossover rate in [0,1] is used and another new
child is generated (k = 2).



4) Continuous generation model [13] is adopted. Usually
discrete generation model is adopted in DE and when
the child is better than the parent, the child survives in
the next generation. In this study, when the child is better
than the parent, the parent is immediately replaced by
the child. It is thought that the continuous generation
model improves efficiency because the model can use
newer information than the discrete model.

5) Reflecting back out-of-bound solutions [14] is adopted.
In order to keep bound constraints, an operation to move
a point outside of the search space S into the inside
of S is required. There are some ways to realize the
movement: generating solutions again, cutting off the
solutions on the boundary, and reflecting points back to
the inside of the boundary [15]. In this study, reflecting
back is used:

xij =


li + (li − xij)−

⌊
li−xij

ui−li

⌋
(ui − li) (xij < li)

ui − (xij − ui) +

⌊
xij−ui

ui−li

⌋
(ui − li) (xij > ui)

xij (otherwise)
(15)

where bzc is the maximum integer smaller than or equal
to z. This operation is applied when a new point is
generated by DE operations.

V. SOLVING OPTIMIZATION PROBLEMS

In this paper, twenty benchmark functions are solved.

A. Test Problems and Experimental Conditions

The twenty scalable benchmark functions can be classified
to five types of functions as follows:

1) Separable Functions (3)
F1: Shifted Elliptic Function
F2: Shifted Rastrigin’s Function
F3: Shifted Ackley’s Function

2) Single-group m-nonseparable Functions (5)
F4: Single-group Shifted and m-rotated Elliptic Func-
tion
F5: Single-group Shifted and m-rotated Rastrigin’s
Function
F6: Single-group Shifted and m-rotated Ackley’s Func-
tion
F7: Single-group Shifted m-dimensional Schwefel’s
Problem 1.2
F8: Single-group Shifted m-dimensional Rosenbrock’s
Function

3) D/2m-group m-nonseparable Functions (5)
F9: D/2m-group Shifted and m-rotated Elliptic Func-
tion
F10: D/2m-group Shifted and m-rotated Rastrigin’s
Function
F11: D/2m-group Shifted and m-rotated Ackley’s Func-
tion
F12: D/2m-group Shifted m-dimensional Schwefel’s
Problem 1.2

F13: D/2m-group Shifted m-dimensional Rosenbrock’s
Function

4) D/m-group m-nonseparable Functions (5)
F14: D/m-group Shifted and m-rotated Elliptic Func-
tion
F15: D/m-group Shifted and m-rotated Rastrigin’s
Function
F16: D/m-group Shifted and m-rotated Ackley’s Func-
tion
F17: D/m-group Shifted m-dimensional Schwefel’s
Problem 1.2
F18: D/m-group Shifted m-dimensional Rosenbrock’s
Function

5) Nonseparable Functions (2)
F19: Shifted Schwefel’s Problem 1.2
F20: Shifted Rosenbrock’s Function

where dimension D = 1000 and group size m = 50. The
optimum function values are 0 for all the problems.

Independent 25 runs are performed for 20 problems. Each
run stops when the number of function evaluations (FEs) ex-
ceeds the maximum number of evaluations FEmax=3,000,000.

B. Experimental Results on the Proposed Method

The parameters settings for LMDEa are as follows: The
population size N=60, the archive size NA=3000, the initial
scaling factor F0=0.6, the term of detecting landscape modal-
ity Td=20, and the number of sampling points is same as the
population size or M=N .

Table I shows the experimental results on LMDEa. The best,
median, worst, mean values and the standard deviation of best
objective value in each run at 120,000FEs, 600,000FEs and
3,000,000FEs are shown for each function.

LMDEa found very good solutions less than 1 on average
in 5 functions F1, F3, F6, F7, F8.

Figures 6 to 13 show the convergence graph of functions
F2, F5, F8, F10, F13, F15, F18 and F20.

C. Comparison with Other Methods

In this section the results obtained by LMDEa are compared
with the ones obtained by other methods. Table II compares
LMDEa with DECC-CG [16] and MLCC [17]. The best results
are highlighted using boldface. From the table, the features of
the results can be summarized as follows:

• LMDEa attained the best average results among all
methods in 15 problems F4–F15 and F18–F20. LMDEa
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TABLE I
EXPERIMENTAL RESULTS ON LMDEA. BEST, MEDIAN, WORST, MEAN VALUES AND STANDARD DEVIATIONS IN 25 RUNS ARE SHOWN

F1 F2 F3 F4 F5 F6 F7

FEs=1.2e+05 Best 4.40e+08 9.68e+03 1.43e+01 2.60e+13 2.35e+08 4.09e+04 6.05e+09
Median 4.92e+08 9.84e+03 1.51e+01 6.08e+13 2.98e+08 6.44e+04 1.46e+10
Worst 6.07e+08 1.02e+04 1.55e+01 9.40e+13 3.41e+08 1.53e+05 2.34e+10
Mean 5.08e+08 9.89e+03 1.51e+01 6.25e+13 2.94e+08 6.90e+04 1.52e+10
Std 4.76e+07 1.37e+02 2.50e-01 1.72e+13 2.51e+07 2.30e+04 3.94e+09

FEs=6.0e+05 Best 3.00e+02 3.23e+03 6.17e-01 1.65e+12 3.68e+07 4.73e+00 2.37e+07
Median 4.32e+02 3.35e+03 9.23e-01 4.23e+12 6.17e+07 5.50e+00 5.03e+07
Worst 6.90e+02 3.53e+03 1.10e+00 9.52e+12 1.50e+08 6.46e+00 1.34e+08
Mean 4.59e+02 3.37e+03 9.16e-01 4.49e+12 7.21e+07 5.60e+00 5.85e+07
Std 1.09e+02 6.88e+01 1.10e-01 1.81e+12 2.74e+07 3.91e-01 2.99e+07

FEs=3.0e+06 Best 2.42e-24 5.31e+02 7.86e-14 1.14e+11 3.68e+07 4.00e-09 3.79e-02
Median 7.36e-24 6.87e+02 8.79e-01 2.06e+11 6.07e+07 4.02e-09 1.91e-01
Worst 1.55e-22 8.62e+02 1.09e+00 3.15e+11 1.13e+08 1.01e+00 6.42e-01
Mean 1.35e-23 6.97e+02 6.44e-01 2.08e+11 6.62e+07 2.63e-01 2.45e-01
Std 2.91e-23 8.22e+01 4.46e-01 5.89e+10 2.02e+07 4.22e-01 1.68e-01

F8 F9 F10 F11 F12 F13 F14

FEs=1.2e+05 Best 6.79e+07 4.06e+09 1.22e+04 2.16e+02 2.67e+06 2.11e+07 7.54e+09
Median 1.71e+08 5.25e+09 1.27e+04 2.26e+02 2.84e+06 2.87e+07 9.59e+09
Worst 4.46e+08 6.33e+09 1.34e+04 2.29e+02 3.05e+06 4.58e+07 1.16e+10
Mean 1.88e+08 5.21e+09 1.27e+04 2.25e+02 2.85e+06 2.90e+07 9.64e+09
Std 9.84e+07 5.87e+08 2.67e+02 2.90e+00 1.07e+05 5.51e+06 8.85e+08

FEs=6.0e+05 Best 3.19e+07 2.26e+08 7.82e+03 4.18e+01 3.91e+05 1.48e+03 6.49e+08
Median 3.30e+07 2.76e+08 9.68e+03 6.70e+01 4.51e+05 2.07e+03 7.55e+08
Worst 3.49e+07 3.25e+08 1.02e+04 1.14e+02 5.17e+05 5.72e+03 1.01e+09
Mean 3.32e+07 2.71e+08 9.65e+03 6.91e+01 4.50e+05 2.34e+03 7.70e+08
Std 8.55e+05 2.40e+07 4.76e+02 1.71e+01 3.21e+04 9.90e+02 7.45e+07

FEs=3.0e+06 Best 7.80e-05 2.25e+07 2.45e+03 6.49e-11 1.35e+04 4.56e+02 7.65e+07
Median 3.29e-04 2.65e+07 2.76e+03 2.74e+00 1.81e+04 5.64e+02 8.67e+07
Worst 9.20e-04 2.98e+07 3.97e+03 5.40e+01 2.49e+04 9.38e+02 1.03e+08
Mean 3.61e-04 2.64e+07 2.80e+03 1.19e+01 1.83e+04 5.95e+02 8.63e+07
Std 2.33e-04 1.89e+06 2.84e+02 1.50e+01 2.62e+03 1.06e+02 6.30e+06

F15 F16 F17 F18 F19 F20

FEs=1.2e+05 Best 1.32e+04 4.14e+02 4.21e+06 2.38e+09 8.75e+06 2.40e+09
Median 1.37e+04 4.17e+02 4.70e+06 2.95e+09 9.96e+06 3.52e+09
Worst 1.42e+04 4.18e+02 5.06e+06 3.97e+09 1.10e+07 4.80e+09
Mean 1.37e+04 4.16e+02 4.65e+06 3.07e+09 1.00e+07 3.57e+09
Std 2.66e+02 7.76e-01 2.37e+05 4.01e+08 5.88e+05 5.43e+08

FEs=6.0e+05 Best 1.14e+04 4.09e+02 1.27e+06 6.11e+03 2.91e+06 3.33e+03
Median 1.21e+04 4.13e+02 1.38e+06 1.80e+04 3.15e+06 3.99e+03
Worst 1.24e+04 4.14e+02 1.48e+06 3.24e+04 3.40e+06 4.56e+03
Mean 1.20e+04 4.13e+02 1.38e+06 1.90e+04 3.17e+06 4.02e+03
Std 3.04e+02 1.21e+00 5.84e+04 6.80e+03 1.44e+05 2.94e+02

FEs=3.0e+06 Best 5.15e+03 3.75e+02 1.92e+05 1.34e+03 4.07e+05 1.11e+03
Median 5.64e+03 3.85e+02 2.13e+05 1.65e+03 4.43e+05 1.38e+03
Worst 6.34e+03 4.00e+02 2.43e+05 2.24e+03 4.93e+05 1.60e+03
Mean 5.63e+03 3.87e+02 2.14e+05 1.68e+03 4.42e+05 1.38e+03
Std 2.81e+02 5.24e+00 1.47e+04 2.09e+02 1.85e+04 1.16e+02
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Fig. 7. The graph of F5

attained the best median results among all methods in 16
problems F4–F16 and F18–F20.

• MLCC attained the best average results among all meth-
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Fig. 8. The graph of F8

ods in 5 problems F1–F3, F16 and F17. MLCC attained
the best median results among all methods in 4 problems
F1–F3 and F17. F1–F3 are separable functions.
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Fig. 9. The graph of F10
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Fig. 10. The graph of F14
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Fig. 11. The graph of F15
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Fig. 12. The graph of F18
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Fig. 13. The graph of F20

• The great differences of results in F7 and F8 between
LMDEa and the others are very clear. F7 and F8 are
single-group m-nonseparable functions.

Thus, it is thought that LMDEa is effective to various prob-
lems.

VI. CONCLUSION

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve nonlinear optimization
problems. In this study, we proposed LMDEa algorithm.
LMDEa utilize a diversity archive to improve the diversity
of search when small population for large scale optimization
problems is used. Also, LMDEa utilized the landscape modal-
ity detection to select a proper value of the scaling factor. It
was shown that LMDEa can improve the search efficiency
compared with DECC-CG and MLCC in 15 problems on
average out of 20 problems. Thus, it is thought that LMDEa
is a very efficient optimization algorithm compared with other
methods.

In the future, we will design more dynamic control of
parameters, especially the crossover rate, for LMDEa.
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