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Abstract— If the landscape of the objective function is
unimodal, the efficiency of population-based optimization
algorithms (POAs) can be improved by selecting strategies
for local search around a best solution. If the landscape is
multimodal, the robustness of the POAs can be improved
by selecting strategies for global search in search space.
We have proposed a method that estimates the landscape
modality by sampling the objective values along a line and
counting the number of changes in the objective values
from increasing to decreasing and vice versa. In this study,
in order to improve the performance of particle swarm
optimization (PSO), we propose to select a proper strategy
according to the landscape modality: The gbest model is
selected in unimodal landscape and the lbest model is
selected in multimodal landscape. The advantage of the pro-
posed method is shown by solving unimodal and multimodal
problems and by comparing it with standard PSOs.

Keywords: Particle swarm optimization, Landscape modality,
Landscape modality estimation, Lbest model, Gbest model

1. Introduction
There exist many studies on solving optimization

problems using population-based optimization algorithms
(POAs) in which a population or multiple search points are
used to search for an optimal solution. For example, swarm
intelligence algorithms inspired by collective animal behav-
ior have been studied such as particle swarm optimization
(PSO)[1], [2] and ant colony optimization. Also, evolution-
ary algorithms inspired by biological evolution have been
studied such as genetic algorithm, evolution strategy and
differential evolution[3], [4]. In general, POAs are stochastic
direct search methods, which only need function values to
be optimized, and are easy to implement. For this reason,
POAs have been successfully applied to various optimization
problems.

In this study, we paid attention to improve PSO. There
are two models or movement strategies in PSO: the gbest
model where each search point or a particle moves toward
the best point in the population and the lbest model where
each search point moves toward a best point in the neighbor
points. It is known that the gbest model can solve unimodal
problems efficiently but the strategy cannot solve multimodal
problems stably and the search by the strategy is sometimes

trapped at a local optimal solution. In contrast, it is known
that the lbest strategy is robust to multimodal problems
but the strategy cannot solve unimodal problems efficiently.
However, the landscape of a problem to be optimized is often
unknown and the landscape is changing dynamically while
the search process proceeds. Thus, it is difficult to select a
proper strategy.

We have proposed a simple method that detects the
modality of landscape being searched: unimodal or not
unimodal[5], [6], [7]. In the method, some points on the line
connecting between the centroid of search points and the
best search point are sampled. When the objective values
of the sampled points are changed decreasingly and then
increasingly, it is thought that one valley exists. If there
exists only one valley or the landscape is unimodal, the
gbest strategy is adopted. In this case, it is expected that
the strategy can realize efficient search. If the number of
valley is greater than one, the lbest strategy is adopted. In
this case, it is expected that the strategy improves the diver-
gence of the search and prevents premature convergence.
The effect of the proposed method is shown by solving
13 benchmark problems including unimodal problems and
multimodal problems.

In Section 2, related works are briefly reviewed. Detecting
landscape modality is explained in Section 3. The optimiza-
tion problem is defined and PSO is explained in Section 4.
PSO with detecting landscape modality is proposed in Sec-
tion 5. In Section 6, experimental results on some problems
are shown. Finally, conclusions are described in Section 7.

2. Related Works
Many studies on strategy selection and parameter tuning

have been done in order to improve the efficiency. The stud-
ies can be classified into two main categories: observation-
based and success-based control[5], [6], [7].

1) observation-based control: The current search state
is observed, proper strategies or parameter values
are inferred according to the observation, and strate-
gies and/or parameters are dynamically controlled.
FADE(Fuzzy Adaptive DE)[8] observes the movement
of search points and the change of function values be-
tween successive generations, and controls algorithm
parameters. DESFC(DE with Speciation and Fuzzy



Clustering)[9] adopts fuzzy clustering, observes parti-
tion entropy of search points, and controls a parameter
and the mutation strategies between the rand and the
species-best strategy.

2) success-based control: It is recognized as a success
case when a better search point than the parent
is generated. The strategies and/or parameters are
adjusted so that the values in the success cases
are frequently used. It is thought that the self-
adaptation, where strategies and/or parameters are
contained in individuals and are evolved by applying
evolutionary operators to the parameters, is included
in this category. DESAP(Differential Evolution with
Self-Adapting Populations)[10] controls algorithm pa-
rameters including population size self-adaptively.
SaDE(Self-adaptive DE)[11] controls the selection
probability of the mutation strategies according to
the success rates and controls the mean value of a
crossover rate for each strategy according to the mean
value in success case. JADE(adaptive DE with op-
tional external archive)[12] and MDE_pBX(modified
DE with p-best crossover)[13] control the mean and
power mean values of two parameters according to
the mean values in success cases.

In the category 1), it is difficult to select proper type
of observation which is independent of the optimization
problem and its scale. In the category 2), when a new
good search point is found near the parent, parameters are
adjusted to the direction of convergence. In problems with
ridge landscape or multimodal landscape, where good search
points exist in small region, parameters are tuned for small
success and big success will be missed. Thus, search process
would be trapped at a local optimal solution.

In this study, we propose a new observation-based control
in the category 1). As a problem independent observation,
landscape modality is adopted and it is estimated whether
the problem is unimodal or multimodal using sampling. It is
thought that a proper strategy or algorithm parameters can
be selected if the landscape modality can be identified.

3. Detecting Landscape Modality using
Sampling

Search points in a current population or a set of search
points P = {xi|i = 1, 2, · · · , N} are used to detect
landscape modality using sampling[5], [6], where N is the
number of search points or population size. The range of
search points is determined, a line is drawn in the range,
and equally spaced points are sampled along the line.

3.1 Sampling
The objective values are examined along the following

line, which connects the centroid of search points xg and

the best search point xb.

x = xg + λ(xb − xg) (1)

xg =
1

N

N∑
i=1

xi (2)

xb = arg min
xi∈P

f(xi) (3)

where λ is a parameter for deciding the position of a point
on the line. The range of the search points [xmin,xmax] can
be given as follows:

xmin
j = min

i
xij (4)

xmax
j = max

i
xij (5)

The range of the λ, [λmin, λmax] satisfies the following
condition:

xmin
j ≤ xg

j + λ(xb
j − xg

j ) ≤ xmax
j (6)

Thus, if (xb
j − xg

j ) is positive, the range of the λ is given
by:

λmin = max
j

xmin
j − xg

j

xb
j − xg

j

(7)

λmax = min
j

xmax
j − xg

j

xb
j − xg

j

(8)

If (xb
j −xg

j ) is negative, xmin
j and xmax

j in the equations are
exchanged.

In order to decide M sampling points {xk|k =
1, 2, · · · ,M}, λk is given as follows:

λk = λmin +
λmax − λmin

M − 1
(k − 1) (9)

zk = xg + λk(x
b − xg) (10)

Figure 1 shows an example of the sampling, where search
points are shown by black circles, the centroid is shown by a
white circle, sampling points are shown by triangles in case
of M = 6.

3.2 Landscape Modality
In the obtained sequence {f(zk)|k = 1, 2, · · · ,M}, hill-

valley relation is examined. For each point, the function
dir(·) is introduced in order to judge whether the change
is increasing or decreasing:

dir(zk) =

 1 (f(zk+1) > f(zk))
−1 (f(zk+1) < f(zk))

dir(zk−1) (otherwise)
(11)

Figure 2 shows an example of detecting unimodal landscape,
where the objective values are shown by the function of λ.

The landscape modality is identified using the number of
changes in dir function. If the value of dir changed from
-1 to 1 only once or there is no changes, it is thought that
one valley exists and the landscape is unimodal. Otherwise,
the landscape is not unimodal.
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Fig. 1: An example of sampling for detecting landscape
modality.
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Fig. 2: An example of detecting unimodal landscape.

4. Optimization Problems and Particle
Swarm Optimization
4.1 Optimization Problems

In this study, the following optimization problem (P) with
lower bound and upper bound constraints will be discussed.

(P) minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , n,

(12)

where x = (x1, x2, · · · , xn) is an n dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.

4.2 Particle Swarm Optimization
An animal such as an ant, a fish, and a bird has limited

memory and ability to perform simple actions. In contrast,
a group of animals such as an ant swarm, a fish school,

and a bird flock can take complex or intelligent actions such
as avoiding predators and seeking foods efficiently. Swarm
intelligence is defined as the collective actions of agents that
act autonomously and communicate each other. PSO[2] is a
swarm intelligence based optimization method which was
inspired by the movement of a bird flock. PSO imitates the
movement to solve optimization problems and is considered
as a population-based stochastic search method or POA.

Searching procedures by PSO can be described as follows:
A group of agents minimizes the objective function f . At
any time t, each agent i knows its current position xt

i

and velocity vt
i. It also remembers its personal best visited

position until now x∗
i and the objective value pbesti.

x∗
i = arg min

τ=0,1,··· ,t
f(xτ

i ) (13)

pbesti = f(x∗
i ) (14)

Two models, gbest model and lbest model have been pro-
posed. In the gbest model, every agent knows the best visited
position x∗

G in all agents and its objective value gbest.

x∗
G = argmin

i
f(x∗

i ) (15)

gbest = f(x∗
G) (16)

In the lbest model, each agent knows the best visited position
x∗
l in the neighbors and its objective value lbesti, where l

is the best visited position in the neighborhood.

x∗
l = arg min

k∈Ni

f(x∗
k) (17)

lbesti = f(x∗
l ) (18)

where Ni is the set of neighbor agents to i. The velocity of
the agent i at time t+ 1 is defined as follows:

vt+1
ij = wvtij + c1 rand1ij (x

∗
ij − xt

ij) (19)

+ c2 rand2ij (x
∗
lj − xt

ij)

where l = G in the gbest model, w is an inertia weight
and randkij is a uniform random number in [0, 1] which
is generated in each dimension. c1 is a cognitive parameter,
c2 is a social parameter which represent the weight of the
movement to the personal best and the group/neighbors best
respectively.

The position of the agent i at time t+1 is given as follows:

xt+1
i = xt

i + vt+1
i (20)

4.3 Algorithm of PSO
The algorithm of PSO is defined as follows:
1) Initializing agents: Each agent i with a position xi

and a velocity vi is created. xi is randomly generated
in the search space S, namely each element xij is
a uniform random number in [lj , uj ]. vi is the zero
vector where every element vij=0 in this study. The
best visited position is set to the initial position,
namely x∗

i =xi.



2) Selecting the best agent: The id of the best agent G is
decided.

3) Stopping if termination condition is satisfied: The
algorithm is stopped when the number of function
evaluations reaches the maximum number of evalu-
ations FEmax.

4) Updating agents: The position and velocity of each
agent i are updated according to Eq.(19) and Eq.(20),
respectively. The each element of the velocity is trun-
cated in [−Vmaxj , Vmaxj ]. If the objective value of the
new position is better than the personal best value, the
personal best visited position is replaced with the new
position. If the objective value of the new position
is better than the group best value, the group’s best
visited position is replaced with the new position.

5) Go back to 3.

5. Proposed Method
In this section, a method of selecting a movement strategy

dynamically is proposed for PSO.

5.1 Strategy selection
In general, if divergence of agents is kept to realize a

global search, it can be avoided to be trapped at a local
solution but the efficiency of the search will be reduced.
If convergence of agents is enforced to realize local search
around the best agent, the efficiency of the search is im-
proved but the search will be trapped at a local solution.

In PSO, the gbest model can realize the local search and
the lbest model can realize the global search. In the lbest
model, the neighborhood of agents is defined as a topology
such as star topology, ring topology, mesh topology, and
so on. In this study, the ring topology is adopted, where
agents are connected in the order of the agent numbers. The
neighborhood size Nneighbor is an important parameter in
the lbest model. Small neighborhood size strengthens the
global search and large neighborhood size strengthens the
local search. When the size is same as the population size,
the lbest model becomes the gbest model. In this study,
the gbest model is selected for unimodal landscape and the
lbest model with Nneighbor = 5 including the agent itself is
selected for multimodal landscape.

5.2 Proposed algorithm
Figure 3 shows the proposed algorithm named LPSO(PSO

with detecting Landscape modality), where TL is the interval
of iterations when landscape modality is estimated, Nsmall

is the neighborhood size for the global search, and Nlarge

is the neighborhood size for the local search. Lines with ’+’
at the first column are the modification to standard PSO.

If the number of direction changes from decreasing to
increasing and vice versa is 1 or zero, the landscape modality
is estimated as unimodal. However, the estimation should
be done carefully because the sampling is done in a small

region and the number of sampling points is small. Thus,
the number of successive unimodal estimations is counted
and if the number is equal to or greater than Nunimodal the
landscape is identified as unimodal.

Initialize P;
Evaluate all x in P;
G=argmin{i|xi∈P} f(xi)
+unimodal=0;
for(t=1;t ≤ T;t++) {
+ if(t%TL==1) {
+ changed=landscape modality estimation in P;
+ if(changed==0 || changed==1) unimodal++;
+ else unimodal=0;
+ }
+ if(unimodal≥Nunimodal) Nneighbor=Nlarge;
+ else Nneighbor=Nsmall;

for(each agent i in P) {
l=best agent in i’s neighborhood

of size Nneighbor;
for(each dimension j) {

vij=wvij+c1rand1ij(x∗
ij-xij)

+c2rand2ij(x∗
lj-xij);

if(vij>Vmaxj) vij=Vmaxj;
else if(vij<−Vmaxj) vij=−Vmaxj;
xij=xij+vij;

}
Evaluate xi;
if(f(xi) < f(x∗

i )) {
if(f(xi) < f(x∗

G)) G=i;
x∗
i =xi;

}
}

}
returns x∗

G as the best solution;

Fig. 3: Algorithm of LPSO.

6. Solving Optimization Problems
In this study, well-known thirteen benchmark problems

are solved.

6.1 Test Problems and Experimental Condi-
tions

The 13 scalable benchmark functions are shown in Table
1[12]. All functions have an optimal value 0. Some char-
acteristics are briefly summarized as follows: Functions f1
to f4 are continuous unimodal functions. The function f5
is Rosenbrock function which is unimodal for 2- and 3-
dimensions but may have multiple minima in high dimension
cases[14]. The function f6 is a discontinuous step function,
and f7 is a noisy quartic function. Functions f8 to f13 are
multimodal functions and the number of their local minima
increases exponentially with the problem dimension[15].

Independent 50 runs are performed for 13 problems. The
dimension of problems is 30 (D=30). The maximum number
of evaluations FEmax is 200,000. The parameters of PSO



Table 1: Test functions of dimension D. These are sphere,
Schwefel 2.22, Schwefel 1.2, Schwefel 2.21, Rosenbrock,
step, noisy quartic, Schwefel 2.26, Rastrigin, Ackley,
Griewank, and two penalized functions, respectively[16].

Test functions Domain

f1(x) =
∑D

i=1 x
2
i [−100, 100]D

f2(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i
j=1 xj

)2
[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =∑D−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

] [−30, 30]D

f6(x) =
∑D

i=1bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1 ix
4
i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1 −xi sin
√

|xi| + D ·
418.98288727243369

[−500, 500]D

f9(x) =∑D
i=1

[
x2
i − 10 cos(2πxi) + 10

] [−5.12, 5.12]D

f10(x) =

−20 exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(
xi√
i

)
+ 1

[−600, 600]D

f12(x) =
π
D
[10 sin2(πy1) +

∑D−1
i=1 (yi − 1)2

{1 + 10 sin2(πyi+1)} + (yD − 1)2]
+
∑D

i=1 u(xi, 10, 100, 4)
where yi = 1 + 1

4
(xi + 1)

and u(xi, a, k,m) = k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) =
0.1[sin2(3πx1) +

∑D−1
i=1 (xi − 1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}]
+

∑D
i=1 u(xi, 5, 100, 4)

[−50, 50]D

are selected according to [17]: Number of agents N = 30,
w = 0.729, c1 = c2 = 0.729×2.05 = 1.49455 and Vmaxj =
0.5(uj − lj). The parameters of LPSO are: The number
of sampling points M = N , TL = 200, Nunimodal = 5,
Nsmall = 5 for the lbest model and Nlarge = N for the
gbest model.

6.2 Experimental Results
The performance of three algorithms, gbest model PSO,

lbest model PSO, and LPSO are compared. Table 2 shows
the experimental results. The mean value and standard
deviation of best objective values over 50 runs are shown
in the top row for each function. The number of success
runs, where the algorithm can find the near optimal value
less than 10−7, is shown in the bottom row. The best results
among all algorithms are highlighted using bold face fonts.

The gbest model PSO attained the best results in unimodal
functions f1, f2, f3 and f4. Also, the gbest model attained

the best results in multimodal functions f5, f8 and f9. It is
thought that the gbest model is suitable not only to unimodal
functions but also to functions where search points need to
move a fairly long distance such as f5 and f8. The lbest
model PSO attained the best results in multimodal functions
f12 and f13, and in the step function f6.

It is thought that LPSO will show the intermediate per-
formance between the gbest model and the lbest model.
Nevertheless, LPSO attained the best results in multimodal
functions f10 and f11, the step function f6 and the noisy
function f7. Thus, it is shown that dynamic selection of the
gbest model and the lbest model can attain better result than
pure gbest or lbest model.

LPSO got the first and second rank among three algo-
rithms and did not get the worst rank in all functions. The
average ranks of the gbest model, the lbest model and LPSO
are 1.85, 2.42 and 1.73, respectively. LPSO attained the best
performance as for the average rank.

The average success runs over 13 functions in the gbest
model, the lbest model and LPSO are 21.00, 20.46 and
30.62, respectively. LPSO attained the best performance as
for the average success runs.

Therefore, it is thought that LPSO showed the most stable
performance.

As a reference, convergence graphs of test functions are
shown in Figure 4, where the mean best objective values of
LPSO, the gbest model PSO and the lbest model PSO are
plotted over the number of function evaluations.

7. Conclusions
It is difficult to select a proper optimization strategy,

because the proper strategy depends on the optimization
problem and also on landscape currently being searched.
In this study, in order to select a proper strategy of PSO
dynamically, a dynamic selection of strategies is proposed
where the gbest model is selected in unimodal landscape and
the lbest model is selected in multimodal landscape. Various
13 functions are solved and the results are compared with
those of the gbest and lbest models of PSO. It was shown
that the proposed method sometimes outperformed the pure
models and attained the most stable performance.

In the future, we will apply the dynamic selection of
strategies to various algorithms. Also, we will apply the
dynamic selection of algorithms such as an algorithm in
unimodal landscape and another algorithm in multimodal
landscape.

Acknowledgment
This research is supported in part by Grant-in-Aid for

Scientific Research (C) (No. 22510166,24500177) of Japan
society for the promotion of science and Hiroshima City
University Grant for Special Academic Research (General
Studies).



Table 2: Experimental results on standard PSOs and the proposed method. Mean value ± standard deviation and the number
of success runs in 50 runs are shown.

gbest model PSO lbest model PSO LPSO
f1 7.650e-118 ± 2.779e-117 3.392e-46 ± 7.533e-46 3.562e-109 ± 2.449e-108

[50] [50] [50]
f2 1.306e-39 ± 9.139e-39 4.722e-29 ± 3.509e-29 1.378e-38 ± 7.001e-38

[50] [0] [50]
f3 1.451e-13 ± 2.707e-13 1.912e+03 ± 9.675e+02 7.385e-13 ± 1.811e-12

[50] [0] [50]
f4 1.058e-06 ± 2.506e-06 1.496e-01 ± 8.532e-02 1.476e-06 ± 2.992e-06

[11] [0] [11]
f5 1.139e+01 ± 1.731e+01 7.128e+01 ± 4.073e+01 3.450e+01 ± 3.424e+01

[0] [0] [0]
f6 2.900e+00 ± 6.275e+00 0.000e+00 ± 0.000e+00 0.000e+00 ± 0.000e+00

[19] [50] [50]
f7 5.543e-03 ± 2.994e-03 1.047e-02 ± 3.555e-03 4.201e-03 ± 1.557e-03

[0] [0] [0]
f8 3.043e+03 ± 6.714e+02 4.394e+03 ± 5.930e+02 4.313e+03 ± 5.978e+02

[0] [0] [0]
f9 7.245e+01 ± 1.612e+01 1.030e+02 ± 1.701e+01 7.466e+01 ± 1.933e+01

[0] [0] [0]
f10 1.626e+00 ± 1.053e+00 1.581e-14 ± 4.884e-15 1.105e-14 ± 5.012e-15

[10] [50] [50]
f11 2.472e-02 ± 3.357e-02 3.149e-03 ± 9.259e-03 6.191e-04 ± 1.844e-03

[19] [16] [39]
f12 1.826e-01 ± 3.576e-01 1.135e-21 ± 7.942e-21 4.147e-03 ± 2.031e-02

[28] [50] [48]
f13 8.743e-02 ± 3.750e-01 1.350e-32 ± 0.000e+00 1.352e-32 ± 1.726e-34

[36] [50] [50]
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Fig. 4: Convergence graphs.


