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Abstract: In population-based optimization algorithms (POAs) such as particle swarm optimization (PSO), if landscape
modality of an objective function can be identified, strategies of the POAs can be selected properly. We have proposed a
method that estimates the landscape modality by sampling some points along a line and counting the number of changes
in the objective values from increasing to decreasing and vice versa. In the method, the range of sampling on the line
cannot be decided when the width of the search points in a dimension is zero. In this study, we propose to determine
the range using inner products and also we propose to select a proper strategy according to the landscape modality: The
gbest model is selected in unimodal landscape and the lbest model is selected in multimodal landscape. Also, a simple
parameter selection for unimodal landscape is introduced. The advantage of the proposed method is shown by solving
various problems including unimodal and multimodal problems and by comparing the results of the proposed method
with those of the gbest and lbest model of PSO.
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1. INTRODUCTION
There exist many studies on solving optimization

problems using population-based optimization algo-
rithms (POAs) in which a population or multiple search
points are used to search for an optimal solution. For
example, swarm intelligence algorithms inspired by col-
lective animal behavior have been studied such as particle
swarm optimization (PSO)[1, 2] and ant colony optimiza-
tion. In general, POAs are stochastic direct search meth-
ods, which only need function values to be optimized, and
are easy to implement. For this reason, POAs have been
successfully applied to various optimization problems.

In this study, PSO is adopted as a POA. There are two
models or movement strategies in PSO: the gbest model
where each search point or a particle moves toward the
best point in the population and the lbest model where
each search point moves toward a best point in the neigh-
bor points. It is known that the gbest model can solve uni-
modal problems efficiently but the strategy cannot solve
multimodal problems stably and the search by the strat-
egy is sometimes trapped at a local optimal solution. In
contrast, it is known that the lbest strategy is robust to
multimodal problems but the strategy cannot solve uni-
modal problems efficiently. However, the landscape of a
problem to be optimized is often unknown and the land-
scape is changing dynamically while the search process
proceeds. Thus, it is difficult to select a proper strategy.

We have proposed a simple method that detects the
modality of landscape being searched: unimodal or
multimodal[3-6]. In the method, some points on the line
connecting between the centroid of search points and the
best search point are sampled. However, in the method,
the range of sampling on the line cannot be determined
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when elements of search points in a dimension are same,
or width of the search points in a dimension is zero. In
this study, we propose to determine the range using a pro-
jection of search points onto the line, where the projection
is obtained by inner products.

When the objective values of the sampled points are
changed decreasingly and then increasingly, it is thought
that one valley exists. If there exists only one valley or
the landscape is unimodal, the gbest strategy is adopted.
In this case, it is expected that the strategy can realize
efficient search. If the number of valley is greater than
one, the lbest strategy is adopted. In this case, it is ex-
pected that the strategy improves the divergence of the
search and prevents premature convergence. The effect of
the proposed method is shown by solving 13 benchmark
problems including unimodal problems and multimodal
problems.

In Section 2, related works are briefly reviewed. De-
tecting landscape modality is explained in Section 3. The
optimization problem is defined and PSO is described in
Section 4. PSO with detecting landscape modality is pro-
posed in Section 5. In Section 6, experimental results on
some problems are shown. Finally, conclusions are de-
scribed in Section 7.

2. RELATED WORKS
Many studies on strategy selection and parameter tun-

ing have been done in order to improve the efficiency.
The studies can be classified into two main categories:
observation-based and success-based control[3-5].
1. observation-based control: The current search state is
observed, proper strategies or parameter values are in-
ferred according to the observation, and strategies and/or
parameters are dynamically controlled[7, 8].
2. success-based control: It is recognized as a success



case when a better search point than the parent is gener-
ated. The strategies and/or parameters are adjusted so that
the values in the success cases are frequently used. It is
thought that the self-adaptation, where strategies and/or
parameters are contained in individuals and are evolved
by applying evolutionary operators to the parameters, is
included in this category[9-12].

In the category 1, it is difficult to select proper type
of observation which is independent of the optimization
problem and its scale. In the category 2, when a new good
search point is found near the parent, parameters are ad-
justed to the direction of convergence. In problems with
ridge landscape or multimodal landscape, where good
search points exist in small region, parameters are tuned
for small success and big success will be missed. Thus,
search process would be trapped at a local optimal solu-
tion.

In this study, we propose a new observation-based con-
trol in the category 1. As a problem independent obser-
vation, landscape modality is adopted and it is estimated
whether the problem is unimodal or multimodal using
sampling. It is thought that a proper strategy or algorithm
parameters can be selected if the landscape modality can
be identified.

3. DETECTING LANDSCAPE
MODALITY USING INNER

PRODUCTS
Search points in a current population or a set of search

points P = {xi|i = 1, 2, · · · , N} are used to detect
landscape modality using sampling[3, 4], where N is the
number of search points or population size.

3.1. Sampling
The objective values are examined along the following

line, which connects the centroid of search points xg and
the best search point xb.

x = xg + λ(xb − xg) (1)

xg =
1

N

N∑
i=1

xi (2)

xb = arg min
xi∈P

f(xi) (3)

where λ is a parameter for deciding the position of a point
on the line.

In [3-5], the range of sampling is defined by the hyper-
rectangle that is spanned by the search points. The range
of λ is calculated as follows:

λmin = max
j

xmin
j − xg

j

xb
j − xg

j

, λmax = min
j

xmax
j − xg

j

xb
j − xg

j

(4)

where xmin
j and xmax

j are the minimum and maximum
value of the j-th dimension in the hyper-rectangle. There-
fore, the range of sampling on the line cannot be deter-
mined when elements of the search points in a dimension
are same, or width of the search points in a dimension is
zero.

In this study, we propose to determine the range using
a projection of the search points onto the line. Consider
a difference vector from the centroid to a search point
(xi − xg). The projection of the difference vector onto
the line is given as follows:

||xi − xg|| cos θ xb − xg

||xb − xg||
(5)

=
(xi − xg) · (xb − xg)

||xb − xg||2
(xb − xg) (6)

where θ is an angle between the difference vector and the
line, “·” is an inner product and ||x|| is a norm. Thus, the
λ to the projection can be defined as follows:

λi =
(xi − xg) · (xb − xg)

(xb − xg) · (xb − xg)
(7)

The range of λ is defined as follows:

λmin = min
i

λi, λ
max = max

i
λi (8)

In order to decide M sampling points {xk|k =
1, 2, · · · ,M}, λk is given as follows:

λk = λmin +
λmax − λmin

M − 1
(k − 1) (9)

zk = xg + λk(x
b − xg) (10)

Figure 1 shows an example of the sampling, where search
points are shown by black circles, the centroid is shown
by a white circle, sampling points are shown by triangles
in case of M = 6.
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Fig. 1 An example of sampling for detecting landscape
modality

3.2. Landscape Modality
In the obtained sequence {f(zk)|k = 1, 2, · · · ,M},

hill-valley relation is examined. For each point, the func-
tion dir(·) is introduced in order to judge whether the
change is increasing or decreasing:

dir(zk) =

 1 (f(zk+1) > f(zk))
−1 (f(zk+1) < f(zk))

dir(zk−1) (otherwise)
(11)

Figure 2 shows an example of detecting unimodal land-
scape, where the objective values are shown by the func-
tion of λ.
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Fig. 2 An example of detecting unimodal landscape

The landscape modality is identified using the number
of changes in dir function. If the value of dir changed
from -1 to 1 only once or there is no changes, it is thought
that one valley exists and the landscape is unimodal. Oth-
erwise, the landscape is multimodal.

4. OPTIMIZATION PROBLEMS AND
PARTICLE SWARM OPTIMIZATION

4.1. Optimization Problems
In this study, the following optimization problem (P)

with lower bound and upper bound constraints will be
discussed.

(P) minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , n,

(12)

where x = (x1, x2, · · · , xn) is an n dimensional vector
and f(x) is an objective function. The function f is a
nonlinear real-valued function. Values li and ui are the
lower bound and the upper bound of xi, respectively.

4.2. Particle Swarm Optimization
An animal such as an ant, a fish, and a bird has lim-

ited memory and ability to perform simple actions. In
contrast, a group of animals such as an ant swarm, a fish
school, and a bird flock can take complex or intelligent
actions such as avoiding predators and seeking foods ef-
ficiently. Swarm intelligence is defined as the collective
actions of agents that act autonomously and communi-
cate each other. PSO[2] is a swarm intelligence based
optimization method which was inspired by the move-
ment of a bird flock. PSO imitates the movement to solve
optimization problems and is considered as a population-
based stochastic search method or POA.

Searching procedures by PSO can be described as fol-
lows: A group of agents minimizes the objective function
f . At any time t, each agent i knows its current posi-
tion xt

i and velocity vt
i. It also remembers its personal

best visited position until now x∗
i and the objective value

pbesti.

x∗
i = arg min

τ=0,1,···,t
f(xτ

i ) (13)

pbesti = f(x∗
i ) (14)

Two models, gbest model and lbest model have been pro-
posed. In the gbest model, every agent knows the best
visited position x∗

G in all agents and its objective value
gbest.

x∗
G = argmin

i
f(x∗

i ) (15)

gbest = f(x∗
G) (16)

In the lbest model, each agent knows the best visited po-
sition x∗

l in the neighbors and its objective value lbesti,
where l is the best visited position in the neighborhood.

x∗
l = arg min

k∈Ni

f(x∗
k) (17)

lbesti = f(x∗
l ) (18)

where Ni is the set of neighbor agents to i. The velocity
of the agent i at time t+ 1 is defined as follows:

vt+1
ij = wvtij + c1 rand1ij (x

∗
ij − xt

ij) (19)

+ c2 rand2ij (x
∗
lj − xt

ij)

where l = G in the gbest model, w is an inertia weight
and randkij is a uniform random number in [0, 1] which
is generated in each dimension. c1 is a cognitive pa-
rameter, c2 is a social parameter which represent the
weight of the movement to the personal best and the
group/neighbors best respectively.

The position of the agent i at time t + 1 is given as
follows:

xt+1
i = xt

i + vt+1
i (20)

4.3. Algorithm of PSO
The algorithm of PSO is defined as follows:

1. Initializing agents: Each agent i with a position xi and
a velocity vi is created. xi is randomly generated in the
search space, where each element xij is a uniform ran-
dom number in [lj , uj ]. vi is the zero vector where every
element vij=0 in this study. The best visited position is
set to the initial position, namely x∗

i =xi.
2. Selecting the best agent: The id of the best agent G is
decided.
3. Stopping if a termination condition is satisfied: The
algorithm is stopped when the number of function evalu-
ations reaches FEmax.
4. Updating agents: The position and velocity of each
agent i are updated according to Eq.(19) and Eq.(20), re-
spectively. The each element of the velocity is truncated
in [−Vmaxj , Vmaxj ]. If the objective value of the new po-
sition is better than the personal best value, the personal
best visited position is replaced with the new position. If
the objective value of the new position is better than the
group best value, the group’s best visited position is re-
placed with the new position.
5. Go back to 3.

5. PROPOSED METHOD
In this section, a method of selecting a movement strat-

egy dynamically is proposed for PSO.



5.1. Strategy selection and parameter selection
In general, if divergence of agents is kept to realize a

global search, it can be avoided to be trapped at a local so-
lution but the efficiency of the search will be reduced. If
convergence of agents is enforced to realize local search
around the best agent, the efficiency of the search is im-
proved but the search will be trapped at a local solution.

In PSO, the gbest model can realize the local search
and the lbest model can realize the global search. In
the lbest model, the neighborhood of agents is defined
as a topology such as star topology, ring topology, mesh
topology, and so on. In this study, the ring topology is
adopted, where agents are connected in the order of the
agent numbers. The neighborhood size Nneighbor is an
important parameter in the lbest model. Small neighbor-
hood size strengthens the global search and large neigh-
borhood size strengthens the local search. When the size
is same as the population size, the lbest model becomes
the gbest model. In this study, the gbest model is se-
lected for unimodal landscape and the lbest model with
Nneighbor = 5 including the agent itself is selected for
multimodal landscape.

Also, it is thought that convergence of search points is
accelerated by small w. In this study, small w is selected
for unimodal landscape.

5.2. Proposed algorithm
Figure 3 shows the proposed algorithm named

LPSO(PSO with detecting Landscape modality), where
TL is the interval of iterations when landscape modal-
ity is estimated, Nsmall is the neighborhood size for the
global search, and Nlarge is the neighborhood search for
the local search. Lines with ’+’ at the first column are the
modification to standard PSO.

If the number of direction changes from decreasing
to increasing and vice versa is 1 or zero, the landscape
modality is estimated as unimodal. However, the esti-
mation should be done carefully because the sampling is
done in a small region and the number of sampling points
is small. Thus, the number of successive unimodal esti-
mations is counted and if the number is equal to or greater
than Nstable the landscape is identified as unimodal and
the gbest model and small w = wunimodal are adopted.
Otherwise, the lbest model and standard w = w0 are
adopted.

6. SOLVING OPTIMIZATION
PROBLEMS

In this study, well-known thirteen benchmark prob-
lems are solved.

6.1. Test Problems and Experimental Conditions
The 13 scalable benchmark functions are shown in Ta-

ble 1[11]. All functions have an optimal value 0. Some
characteristics are briefly summarized as follows: Func-
tions f1 to f4 are continuous unimodal functions. The
function f5 is Rosenbrock function which is unimodal
for 2- and 3-dimensions but may have multiple minima

Initialize P;
Evaluate all x in P;
G=argmin{i|xi∈P} f(xi)
+unimodal=0;
for(t=1;t ≤ T;t++) {
+ if(t%TL==1) {
+ changed=landscape modality of P;
+ if(changed==0 || changed==1) unimodal++;
+ else unimodal=0;
+ }
+ if(unimodal≥Nstable) {
+ Nneighbor=Nlarge; w=wunimodal;
+ }
+ else {
+ Nneighbor=Nsmall; w=w0;
+ }

for(each agent i in P) {
l=best agent in i’s neighborhood

of size Nneighbor;
for(each dimension j) {

vij=wvij+c1rand1ij(x∗
ij-xij)

+c2rand2ij(x∗
lj-xij);

if(vij>Vmaxj) vij=Vmaxj;
else if(vij<−Vmaxj) vij=−Vmaxj;
xij=xij+vij;

}
Evaluate xi;
if(f(xi) < f(x∗

i )) {
if(f(xi) < f(x∗

G)) G=i;
x∗
i =xi;

}
}

}
returns x∗

G as the best solution;

Fig. 3 Algorithm of LPSO

in high dimension cases[13]. The function f6 is a dis-
continuous step function, and f7 is a noisy quartic func-
tion. Functions f8 to f13 are multimodal functions and
the number of their local minima increases exponentially
with the problem dimension[14].

Independent 50 runs are performed for 13 problems.
The dimension of problems is 30 (D=30). The maxi-
mum number of evaluations FEmax is 200,000. The pa-
rameters of PSO are selected according to [16]: Num-
ber of agents N = 30, w0 = 0.729, c1 = c2 =
0.729 × 2.05 = 1.49455 and Vmaxj

= 0.5(uj − lj).
The parameters of LPSO are: The number of sampling
points M = N , TL = 500, Nstable = 5, Nlarge = N
and wunimodal = 0.95w0 for unimodal landscape, and
Nsmall = 5 for multimodal landscape.

6.2. Experimental Results
The performance of four algorithms, gbest model

PSO, lbest model PSO, LPSO without parameter se-
lection (LPSO-w) and LPSO with parameter selection
(LPSO) are compared. Table 2 shows the experimental
results. The mean values and standard deviations of best
objective values over 50 runs are shown in the top row
for each function. The number of success runs, where the
algorithm can find the near optimal value less than 10−7,
is shown in the bottom row. The best results among all
algorithms are highlighted using bold face fonts.



Table 1 Test functions of dimension D. These are
sphere, Schwefel 2.22, Schwefel 1.2, Schwefel 2.21,

Rosenbrock, step, noisy quartic, Schwefel 2.26,
Rastrigin, Ackley, Griewank, and two penalized

functions, respectively[15]

Test functions Domain

f1(x) =
∑D

i=1
x2
i [−100, 100]D

f2(x) =
∑D

i=1
|xi|+

∏D

i=1
|xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i

j=1
xj

)2

[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =∑D−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

] [−30, 30]D

f6(x) =
∑D

i=1
bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1
ix4

i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1
−xi sin

√
|xi| + D ·

418.98288727243369
[−500, 500]D

f9(x) =∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

] [−5.12, 5.12]D

f10(x) =

−20 exp

(
−0.2

√
1
D

∑D

i=1
x2
i

)
− exp

(
1
D

∑D

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =

1
4000

∑D

i=1
x2
i −

∏D

i=1
cos

(
xi√
i

)
+ 1

[−600, 600]D

f12(x) =
π
D
[10 sin2(πy1) +

∑D−1

i=1
(yi − 1)2

{1 + 10 sin2(πyi+1)} + (yD − 1)2]

+
∑D

i=1
u(xi, 10, 100, 4)

where yi = 1 + 1
4
(xi + 1)

and u(xi, a, k,m) ={
k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) =

0.1[sin2(3πx1) +
∑D−1

i=1
(xi − 1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}]
+
∑D

i=1
u(xi, 5, 100, 4)

[−50, 50]D

The gbest model PSO attained best results in unimodal
functions f2. Also, the gbest model attained best results
in multimodal functions f5, f8 and f9. It is thought that
the gbest model is suitable not only to unimodal functions
but also to functions where search points need to move a
fairly long distance such as f5 and f8. The lbest model
PSO attained best results in multimodal functions f12 and
f13, and in the step function f6. LPSO without parame-
ter selection attained best results in multimodal functions
f10 and f11, the step function f6, and the noisy function
f7. LPSO with parameter selection attained best results in
unimodal functions f1, f3, f4. Also, LPSO attained best
results in multimodal functions f11, the step function f6,
and noisy function f7.

It is thought that LPSO without parameter selection
will show the intermediate performance between the
gbest model and the lbest model. Nevertheless, LPSO
without parameter selection attained best results in four

functions. Thus, it is shown that dynamic selection of the
gbest model and the lbest model can attain better result
than pure gbest or lbest model. PSO with parameter se-
lection attained best results in unimodal functions such
as f1, f3 and f4 because convergence to the best solu-
tion is accelerated by using small w. It is thought that the
parameter selection is effective to unimodal functions.

LPSO attained better results in 9 functions compared
with the gbest model. LPSO attained better results in 9
functions and one same result compared with the lbest
model. LPSO attained better results in 4 functions and
6 same results compared with LPSO without parameter
selection.

LPSO did not get the worst rank among four algo-
rithms in all functions. The average ranks of the gbest
model, the lbest model, LPSO-w and LPSO are 2.54,
3.15, 2.27 and 2.04, respectively. LPSO attained the best
performance as for the average rank.

The average success runs over 13 functions in the
gbest model, the lbest model and LPSO are 21.00, 20.46
30.00 and 30.38, respectively. LPSO attained the best
performance as for the average success runs.

Therefore, it is thought that LPSO showed the most
stable performance.

7. CONCLUSIONS
It is difficult to select a proper optimization strategy,

because the proper strategy depends on the optimization
problem and also on landscape currently being searched.
In this study, in order to select a proper strategy of PSO
dynamically, a dynamic selection of strategies is pro-
posed where the gbest model is selected in unimodal
landscape and the lbest model is selected in multimodal
landscape. Also, a simple parameter selection in uni-
modal landscape is introduced. Various 13 functions are
solved and the results are compared with those of the
gbest and lbest models of PSO. It was shown that the pro-
posed method often outperformed the pure models and
attained the most stable performance.

In the future, we will apply the dynamic selection of
strategies to various algorithms. Also, we will apply the
dynamic selection of algorithms such as an algorithm in
unimodal landscape and another algorithm in multimodal
landscape.

ACKNOWLEDGMENT
This research is supported in part by Grant-in-Aid for

Scientific Research (C) (No. 24500177, 26350443) of
Japan society for the promotion of science and Hiroshima
City University Grant for Special Academic Research
(General Studies).

REFERENCES
[1] J. Kennedy and R. C. Eberhart, “Particle Swarm

Optimization”, Proc. of IEEE International Confer-
ence on Neural Networks, Perth, Australia, Vol. IV,
pp. 1942–1948, 1995.



Table 2 Experimental results on standard PSOs and the proposed methods

gbest model PSO lbest model PSO LPSO-w LPSO
f1 7.650e-118 ± 2.779e-117 3.392e-46 ± 7.533e-46 4.506e-108 ± 3.128e-107 2.803e-133 ± 1.124e-132

[50] [50] [50] [50]
f2 1.306e-39 ± 9.139e-39 4.722e-29 ± 3.509e-29 3.250e-38 ± 1.401e-37 5.347e-31 ± 3.549e-30

[50] [0] [50] [50]
f3 1.451e-13 ± 2.707e-13 1.912e+03 ± 9.675e+02 7.549e-13 ± 1.564e-12 5.396e-16 ± 3.079e-15

[50] [0] [50] [50]
f4 1.058e-06 ± 2.506e-06 1.496e-01 ± 8.532e-02 2.129e-06 ± 5.512e-06 7.608e-07 ± 1.303e-06

[11] [0] [11] [16]
f5 1.139e+01 ± 1.731e+01 7.128e+01 ± 4.073e+01 2.844e+01 ± 2.188e+01 2.704e+01 ± 1.905e+01

[0] [0] [0] [0]
f6 2.900e+00 ± 6.275e+00 0.000e+00 ± 0.000e+00 0.000e+00 ± 0.000e+00 0.000e+00 ± 0.000e+00

[19] [50] [50] [50]
f7 5.543e-03 ± 2.994e-03 1.047e-02 ± 3.555e-03 4.092e-03 ± 1.819e-03 4.092e-03 ± 1.819e-03

[0] [0] [0] [0]
f8 3.043e+03 ± 6.714e+02 4.394e+03 ± 5.930e+02 4.288e+03 ± 6.504e+02 4.288e+03 ± 6.504e+02

[0] [0] [0] [0]
f9 7.245e+01 ± 1.612e+01 1.030e+02 ± 1.701e+01 7.974e+01 ± 1.935e+01 7.974e+01 ± 1.935e+01

[0] [0] [0] [0]
f10 1.626e+00 ± 1.053e+00 1.581e-14 ± 4.884e-15 1.460e-14 ± 6.185e-15 5.603e-14 ± 9.563e-14

[10] [50] [50] [50]
f11 2.472e-02 ± 3.357e-02 3.149e-03 ± 9.259e-03 1.826e-03 ± 4.786e-03 1.826e-03 ± 4.786e-03

[19] [16] [30] [30]
f12 1.826e-01 ± 3.576e-01 1.135e-21 ± 7.942e-21 2.073e-03 ± 1.451e-02 2.073e-03 ± 1.451e-02

[28] [50] [49] [49]
f13 8.743e-02 ± 3.750e-01 1.350e-32 ± 0.000e+00 1.389e-32 ± 1.219e-33 1.446e-32 ± 2.096e-33

[36] [50] [50] [50]

[2] J. Kennedy and R. C. Eberhart, Swarm Intelligence,
San Francisco: Morgan Kaufmann, 2001.

[3] T. Takahama and S. Sakai, “Differential Evolution
with Dynamic Strategy and Parameter Selection by
Detecting Landscape Modality”, Proc. of the 2012
IEEE Congress on Evolutionary Computation, pp.
2114–2121, 2012.

[4] T. Takahama and S. Sakai, “Large Scale Opti-
mization by Differential Evolution with Landscape
Modality Detection and a Diversity Archive”, Proc.
of the 2012 IEEE Congress on Evolutionary Com-
putation, pp. 2842–2849, 2012.

[5] S. Sakai and T. Takahama, “Large Scale Optimiza-
tion by Adaptive Differential Evolution with Land-
scape Modality Detection and a Diversity Archive”,
Journal of Business Studies, Vol. 58, No. 3, pp. 55–
77, 2012.

[6] T. Takahama and S. Sakai, “Selecting Strategies in
Particle Swarm Optimization by Sampling-Based
Landscape Modality Detection”, Proc. of the 2014
International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, to
appear, 2014.

[7] J. Liu and J. Lampinen, “A Fuzzy Adaptive Differ-
ential Evolution Algorithm”, Soft Comput., Vol. 9,
No. 6, pp. 448–462, 2005.

[8] T. Takahama and S. Sakai, “Fuzzy C-Means Clus-
tering and Partition Entropy for Species-Best Strat-
egy and Search Mode Selection in Nonlinear Op-
timization by Differential Evolution”, Proc. of the
2011 IEEE International Conference on Fuzzy Sys-
tems, pp. 290–297, 2011.

[9] J. Teo, “Exploring Dynamic Self-Adaptive Pop-
ulations in Differential Evolution”, Soft Comput.,

Vol. 10, No. 8, pp. 673–686, 2006.
[10] A. Qin, V. Huang and P. Suganthan, “Differential

Evolution Algorithm With Strategy Adaptation for
Global Numerical Optimization”, IEEE Transac-
tions on Evolutionary Computation, Vol. 13, No. 2,
pp. 398–417, 2009.

[11] J. Zhang and A. C. Sanderson, “JADE: Adap-
tive Differential Evolution With Optional Exter-
nal Archive”, IEEE Transactions on Evolutionary
Computation, Vol. 13, No. 5, pp. 945–958, 2009.

[12] S. M. Islam, S. Das, S. Ghosh, S. Roy and P. N. Sug-
anthan, “An Adaptive Differential Evolution Algo-
rithm With Novel Mutation and Crossover Strate-
gies for Global Numerical Optimization”, IEEE
Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 42, No. 2, pp. 482–500,
2012.

[13] Y.-W. Shang and Y.-H. Qiu, “A Note on the Ex-
tended Rosenbrock Function”, Evolutionary Com-
putation, Vol. 14, No. 1, pp. 119–126, 2006.

[14] X. Yao, Y. Liu, and G. Lin, “Evolutionary Program-
ming Made Faster”, IEEE Transactions on Evolu-
tionary Computation, Vol. 3, pp. 82–102, 1999.

[15] X. Yao, Y. Liu, K.-H. Liang and G. Lin, “Fast
Evolutionary Algorithms”, A. Ghosh and S. Tsut-
sui (eds.), Advances in Evolutionary Computing:
Theory and Applications, New York, NY, USA:
Springer-Verlag New York, Inc., pp. 45–94, 2003.

[16] R. Eberhart and Y. Shi, “Particle swarm optimiza-
tion: developments, applications and resources”,
Proceedings of the 2001 Congress on Evolutionary
Computation, Vol. 1, pp. 81–86, 2001.


