
Emerging Collective Intelligence in Othello Players
Evolved by Differential Evolution

Tetsuyuki Takahama
Department of Intelligent Systems

Hiroshima City University
Asaminami-ku, Hiroshima, 731-3194 Japan
Email: takahama@info.hiroshima-cu.ac.jp

Setsuko Sakai
Faculty of Commercial Sciences

Hiroshima Shudo University
Asaminami-ku, Hiroshima, 731-3195 Japan

Email: setuko@shudo-u.ac.jp

Abstract—The evaluation function for game playing is very
important. However, it is difficult to make a good evaluation
function. In this study, we propose to play Othello using collective
intelligence of players. The evaluation functions of the players
are learned or optimized by Differential Evolution. The objective
value is defined based on the total score of the games with a
standard Othello player. In order to generate different types of
players, the objective value is slightly changed by introducing the
stability of each player. Each player can select a next move using
the learned evaluation function. The collective intelligence player
selects a move based on majority vote where the move voted by
many players is selected. It is shown that the collective intelligence
is effective to game players through computer simulation.

Keywords—collective intelligence; differential evolution; Oth-
ello; two-player game

I. INTRODUCTION

In zero-sum, two-player games with perfect information
such as checkers, chess and Othello, successful computer-
based approaches often utilize the following three elements:

• Opening book: An opening book is used to choose
good moves in opening stage.

• Evaluation function: A next move is decided by using
minimax method or αβ-pruning in middle stage. A
minimax game tree for legal moves is constructed up
to a certain depth. Leaf nodes of the tree are evaluated
with the evaluation function. A move which has the
best evaluation value is selected as the next move.

• Complete search: The best move in endgame stage
is decided by searching all legal moves until the end
of the game. Victory or defeat of the game can be
determined if players take the best moves always.

When it is difficult to make an evaluation function for the
game like Go, Monte Carlo tree search [1] can be adopted.
Many playouts, in which both players select legal moves
randomly or stochastically until the end of the game, are
performed. Since the next move is selected based on the
winning percentage of the playouts, the evaluation function
is not used.

The evaluation function is very important element for
playing game. However, it is difficult to make a good eval-
uation function, because the special knowledge for the game
is necessary to make it and much effort is necessary to

improve it through trial and error. In order to solve the
difficulty, there are studies to learn the evaluation function or
the game strategy automatically or by unsupervised learning.
For example, reinforcement learning can be adopted to learn
the strategy using the victory or defeat of games as a reward
or a penalty. Also, optimization methods such as evolutionary
computation can be adopted to learn the evaluation function
using the score of a game as an objective value or a fitness
value.

In this study, we propose to play Othello using collective
intelligence of Othello players in order to investigate whether
collective intelligence is effective to two-player games or not.
Collective intelligence [2] is group intelligence that emerges
from the cooperation or competition of multiple individuals.
The intelligence appears in decision making by the individuals
such as bacteria, animals, human beings and computer agents.
For example, Kasparov versus the World [3] was a game of
chess played in 1999 over the Internet. Kasparov faced with the
World Team of over 50,000 people where moves are decided
by plurality vote. Although Kasparov won, he admitted that he
had never expended as much effort on any other game in his
life. Also, ensemble learning in machine learning is a method
where multiple models (weak learners), which have relatively
low performance, are generated and combined to make a better
model (strong learner), which have high performance. It is
thought that the ensemble learning is an example of collective
intelligence.

In this study, collective intelligence is introduced to
Othello-learning players. The evaluation functions of the learn-
ing players are optimized by Differential Evolution, which
is an evolutionary algorithm. The objective value of each
player for optimization is defined based on the total score
of the games with a standard Othello player. In order to
generate different types of players, the objective value is
slightly changed by introducing the stability of each player.
Each player can select a next move using the learned evaluation
function. The next move using collective intelligence of the
players is decided by majority vote. That is, the collective
intelligence player chooses the move which is voted by many
players. It is shown that the collective intelligence is effective
to game players through computer simulation.

In Section II, related works are briefly reviewed. Othello
and the evaluation function are explained in Section III.
An algorithm for evolving Othello players using Differential
Evolution is proposed in Section IV. In Section V, collective

intelligence of the players is investigated and experimental
results are shown. Finally, conclusions are described in Section
VI.

II. RELATED WORKS

The representative methods for unsupervised learning of
game strategy are reinforcement learning approaches such
as temporal difference learning (TDL) [4] and evolutionary
learning approaches [5]. A famous reinforcement learning
approach was Tesauro’s TD-Gammon [6], [7] which played
the backgammon. The game strategy of backgammon was
expressed by the neural network which was learned by TDL.
TD-Gammon was very strong, nearly as strong as the human
world champion. Also, the strategies of chess [8] and Othello
[9] were learned by TDL. Evolutionary learning approaches
have been applied to backgammon [10], checker [11], [12]
and so on. Also, comparative studies on TDL and evolution-
ary approach [13] was performed and hybridization of both
approaches [14], [15] was proposed. But players generated by
unsupervised learning in chess, Othello, shogi or Go are not
comparable to strong human players.

Recently, collective intelligence in games has been paid
attention to. Takahama and Sakai [16], [17] proposed to learn
multiple players who play tic-tac-toe using neural networks
learned by TDL in artificial game society. A consultation
system to play Shogi was proposed in [18]. One of the moves
that are sent by a set of players is selected as the actual
move. It was shown that the system composed of three famous
Shogi programs played better than each software individually.
Marcolino and Matsubara [19] proposed a multi-agent version
of UCT Monte Carlo Go. During the Monte Carlo simulations,
one agent is randomly selected in multiple agents (agent
database) and the agent will decide the move. The agents are
generated by changing the order of the default heuristics of
Fuego [20]. It was shown that a group of good agents selected
from the database could significantly overcome Fuego.

It is thought that introducing collective intelligence to
artificial game players is one of promising approaches in
games. There are the following problems:

• Generating different types of players, where each
player selects somewhat different moves, is key issue
for emerging collective intelligence. Although differ-
ent types of players can be prepared using some
heuristics, the special knowledge for the game is
necessary. Also, if a different initial solution or a
different initial population is used in TDL or evolu-
tionary approaches, different types of players might
be generated. But the types of players tend to become
similar when same objective value is used and the
optimization process finds nearly optimal solution.

• The number of players is important to emerge collec-
tive intelligence. If a complex evaluation function is
adopted, execution time for playing games becomes
large and the number of players must be reduced.

In this study, stability of players in addition to the fitness
of players is considered to generate different types of players
using an evolutionary approach. A learning player plays with a

standard player in plural games. The fitness value of the learn-
ing player in the games is defined by the results of the games.
The plural games are repeated and the average and the standard
deviation of the fitness values are obtained. Since a player who
has small standard deviation is a stable player, it is thought that
a player with larger fitness value and smaller standard deviation
is a good player. In order to generate different types of players,
the weight between the average fitness value and the standard
deviation is changed appropriately. Also, the weighted piece
counter which is the simplest evaluation function for Othello
is adopted and 101 players are evolved to investigate whether
collective intelligence can be emerged or not.

III. OTHELLO

Othello is a two-player board game with perfect informa-
tion and is played on an 8 × 8 board. There are 64 identical
pieces called discs which are white on one side and black on
the other side. First move player uses black side and second
move player uses white side.

A. Rules

The game starts with two white and two black discs where
same-colored discs are on a diagonal with each other in the
center on the board. The players take turns putting own colored
disc on the board. A legal move consists in placing a disc
on an empty position so that it will bound a horizontal,
vertical, or diagonal line of opponent player’s discs by 2
current player’s discs on each end. The sandwiched opponent’s
discs are reversed and the color of the discs is changed to
current player’s color after the disc is placed. A player passes
if and only if there is no legal move. The game ends when
both players passed consecutively. Then, the player who has
more discs with their color wins. If both players have the same
number of discs with their color, the game is tied.

Fig. 1 shows the initial Othello board and legal moves of
black as stars in the left and legal moves of white in the right.

1

2

3

4

5

6

7

8

A B C D E F G H A B C D E F G H

1

2

3

4

5

6

7

8

Fig. 1. Initial state of Othello and legal moves.

B. The Othello League

A good reference for different Othello player models
and their estimated performance is provided by the Othello
Position Evaluation Function League [21]. The goal is not to
design state-of-the-art Othello players, but to evaluate position
evaluation functions. Therefore, a 1-ply setup is adopted: given
the current state of the board, a player generates all legal
moves and applies the evaluation function to the next states

which are obtained by the legal moves. The most desirable
evaluation value is selected to determine the next move. Ties
are resolved at random. Player’s rank in the league is based
on the score obtained in games played at 1-ply against the
standard heuristic player who uses the standard weighted piece
counter to be described later.

Since Othello game and the players are deterministic (with
an exception when at least two positions have the same
evaluation value and a position is randomly selected), there can
be only two games with changing the color. In order to provide
better performance measure, Othello League introduces some
random factors to Othello. Both players are forced to make
random moves with the probability of ε = 0.1. In other words,
ε greedy strategy is adopted by both players, where 10% of
moves are selected randomly.

C. Weighted piece counter

The weighted piece counter (WPC) is the simplest position
evaluation function which assigns a weight to each position
in Othello board. Let a board position be denoted by (x, y)
which corresponds the x-th column and the y-th row where
x = 1, 2, · · · , 8, y = 1, 2, · · · , 8. Let a weight of the position
(x, y) be denoted by wxy . The evaluation function fw(·) maps
current board state b = (bxy) into the evaluation value and is
defined as follows:

fw(b) =
8∑

y=1

8∑
x=1

wxybxy (1)

bxy =

{
1 a black disc is placed
0 empty
−1 a white disc is placed

(2)

The first move (black) selects a move that maximizes the
evaluation value, but the second move (white) selects a move
that minimizes the evaluation value.

Fig. 2 shows the standard heuristic WPC whose weights are
hand-coded by Yoshioka et al [22]. This standard WPC is often
used in Othello researches as an heuristic expert opponent.

1 -0.25

-0.25 -0.25

0.1 0.05

0.01 0.01

0.1 0.01

0.05 0.01

0.05 0.02

0.02 0.01

0.05 0.1

0.01 0.01

-0.25 1

-0.25 -0.25

0.02 0.05

0.01 0.02

0.01 0.1

0.01 0.05

0.05 0.01

0.1 0.01

0.02 0.01

0.05 0.02

-0.25 -0.25

1 -0.25

0.01 0.01

0.1 0.05

0.01 0.02

0.02 0.05

0.01 0.05

0.01 0.1

0.01 0.01

0.05 0.1

-0.25 -0.25

-0.25 1

1

2

3

4

5

6

7

8

A B C D E F G H

Fig. 2. The standard heuristic Weighted Piece Counter.

IV. LEARNING WPC BY DIFFERENTIAL EVOLUTION

Multiple players learns their own game strategy represented
by WPC using Differential Evolution to emerge collective
intelligence.

A. Learning WPC

The number of variables for WPC is 8×8=64. It is possible
to reduce the number of variables by taking advantage of
symmetries of Othello board. As shown in Fig. 3, WPC can
be represented by 10 variables from a to j [23].

a b

b e

c d

f g

c f

d g

h i

i j

d c

g f

b a

e b

i h

j i

f c

g d

d g

c f

i j

h i

b e

a b

f g

c d

j i

i h

g d

f c

g f

d c

e b

b a

1

2

3

4

5

6

7

8

A B C D E F G H

Fig. 3. The 10 variables a to j for weighted piece counter.

The 10 sets of 100 games are played using WPC, which is
defined by a decision vector x, against the 0.1-greedy standard
WPC player with changing first move and second move. Thus,
the problem of learning WPC can defined as follows:

maximize f(x) (3)
x = (a, b, c, d, e, f, g, h, i, j)

f(x) = score(x) + α stability(x)

scorei(x) = (Wini + 0.5Drawi)/N, i = 1, 2, · · · , S

score(x) =
1

S

S∑
i=1

scorei(x)

stability(x) = −

√√√√ 1

S

S∑
i=1

(scorei(x)− score(x))2

where α is the weight between score and stability, Wini is
the number of winning games, Drawi is the number of draw
games in the i-th set. N is the total number of games in one
set where N = 100. This kind of score is used in real Othello
tournament. S is the number of the sets.

In (3), the stability is defined by the negative value of
the standard deviation and a player with larger score and
larger stability, or smaller standard deviation, can be ob-
tained. In order to generate 101 players, α is changed as
α = 0, 0.02, 0.04, · · · , 2.

B. Differential Evolution

Differential evolution (DE) is proposed by Storn and Price
[24]. DE is a stochastic direct search method using a pop-
ulation or multiple search points. DE has been successfully

applied to optimization problems including non-linear, non-
differentiable, non-convex and multimodal functions [25], [26].
It has been shown that DE is fast and robust to these functions.

In DE, initial individuals are randomly generated within
given search space and form an initial population. Each
individual contains D genes as decision variables. At each
generation or iteration, all individuals are selected as parents.
Each parent is processed as follows: The mutation operation
begins by choosing several individuals from the population
except for the parent in the processing. The first individual
is a base vector. All subsequent individuals are paired to
create difference vectors. The difference vectors are scaled by
a scaling factor F and added to the base vector. The resulting
vector, or a mutant vector, is then recombined with the parent.
The probability of recombination at an element is controlled
by a crossover rate CR. This crossover operation produces a
trial vector. Finally, for survivor selection, the trial vector is
accepted for the next generation if the trial vector is better than
the parent.

There are some variants of DE that have been
proposed. The variants are classified using the notation
DE/base/num/cross such as DE/rand/1/bin and
DE/rand/1/exp. “base” specifies a way of selecting an
individual that will form the base vector. For example,
DE/rand selects an individual for the base vector at random
from the population. DE/best selects the best individual in
the population. “num” specifies the number of difference
vectors used to perturb the base vector. In case of DE/rand/1,
for example, for each parent xi, three individuals xr1, xr2

and xr3 are chosen randomly from the population without
overlapping xi and each other. A new vector, or a mutant
vector m is generated by the base vector xr1 and the
difference vector xr2 − xr3, where F is the scaling factor.

m = xr1 + F (xr2 − xr3) (4)

“cross” specifies the type of crossover that is used to create
a child. For example, ‘bin’ indicates that the crossover is
controlled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing
the crossover rate. Fig. 4 shows the binomial and exponential
crossover. A new child xchild is generated from the parent xi

and the mutant vector m, where CR is a crossover rate.

C. The Algorithm of Differential Evolution

The algorithm of DE is as follows:

Step 0 Population size NP , a scaling factor F and a
crossover rate CR are given.

Step1 Initialization of a population. Initial NP individ-
uals P = {xi|i = 1, 2, · · · , NP} are generated
randomly in search space and form an initial
population.

Step2 Termination condition. If the number of genera-
tions reaches the maximum number of generations
Tmax, the algorithm is terminated.

Step3 DE operations. Each individual xi is selected
as a target vector (parent). If all individuals are
selected, go to Step4. A mutant vector m is gen-
erated according to Eq. (4). A trial vector (child)

binomial crossover DE/·/·/bin
jrand=randint(1,D);
for(k=1; k ≤ D; k++) {
if(k == jrand || u(0, 1) < CR) xchild

k =mk;
else xchild

k =xi
k;

}
exponential crossover DE/·/·/exp

k=1; j=randint(1,D);
do {

xchild
j =mj;

k=k+1; j=(j + 1)%D;
} while(k ≤ D && u(0, 1) < CR);
while(k ≤ D) {

xchild
j =xi

j;
k=k+1; j=(j + 1)%D;

}

Fig. 4. Binomial and exponential crossover operation, where randint(1,D)
generates an integer randomly from [1, D] and u(l, r) is a uniform random
number generator in [l, r].

is generated from the parent xi and the mutant
vector m using a crossover operation shown in
Fig. 4. In this study, the binomial crossover is
adopted. If the child is better than the parent, or
the DE operation is succeeded, the child survives.
Otherwise the parent survives. Go back to Step3
and the next individual is selected as a parent.

Step4 Survivor selection. The population P is formed
by the survivors. Go back to Step2.

Fig. 5 shows a pseudo-code of DE/rand/1.

DE/rand/1()
{
// Initialize a population
P=N individuals generated randomly in S;
for(t=1; t ≤ Tmax; t++) {
for(i=1; i ≤ N; i++) {

// DE operation
xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6∈ {i, p1});
xp3=Randomly selected from P(p3 6∈ {i, p1, p2});
m=xp1+F (xp2 − xp3);
xchild=trial vector is generated from
xi and m by the binomial crossover operation;

// Survivor selection
if
(
f(xchild)>f(xi)

)
zi=xchild;

else zi=xi;
}
P={zi, i = 1, 2, · · · , N};

}
}

Fig. 5. The pseudo-code of DE, Tmax is the maximum number of
generations.

V. EXPERIMENTS FOR COLLECTIVE INTELLIGENCE

A. Experiment 1 for Generating 101 Players

DE/rand/1/bin is executed 101 times to generate 101 dif-
ferent players with changing the weight α as 0, 0.02, 0.04, · · ·,
2. The parameters for DE are shown in Table I.

TABLE I. THE PARAMETERS FOR DE.

Number of individuals NP 50
Maximum number of generations Tmax 200

Initial values for x [-1, 1]
Scaling factor F 0.5

Crossover binomial
Crossover rate CR 0.9

Table II shows the player number, the weight on the
stability α, the learned WPC, the average score and the
standard deviation for each player from player 1 to player 101.
The average values are also shown in the bottom rows as a
reference. The highest scored player is player 37 whose score
is 0.658, the lowest scored player is player 96 whose score is
0.5385, and the average score over all players is 0.573. The
most stable player is player 86 whose standard deviation is
0.0126, the most unstable player is player 4 whose standard
deviation is 0.0591, and the average of the standard deviations
is 0.0298. These results show that a player with a small weight
α on the stability tends to learn WPC with a high score but
low stability and a player with a large weight tends to learn
WPC with high stability and a low score.

As for the best scored player 37, the score is 0.658 and
the standard deviation is second lowest value of 0.0129. The
WPC defined by 10 variables is (53.34, −11.30, 20.97, −3.76,
−21.61, −2.57, 0.05, 0.50, −0.26, −0.16) which weights the
corner position very strongly and is different from the standard
WPC. As for the second best scored player 19, the score is
0.6055, the standard deviation is 0.0335, and the WPC is (3.47,
5.70, −0.40, 1.89, 26.89, −1.30, 0.00, −1.85, 2.77, 1.25)
which is different from the best WPC and the standard WPC.
Thus, it is thought that various WPC can be learned.

B. Experiment 2 for Generalization Ability

Learning 0.1-greedy players against 0.1-greedy standard
player is a highly noisy task due to stochastic fluctuation.
Also, 1,000 games are only a small fraction of possible Othello
games. Thus, the learned players might not have generalization
ability to play various games. In order to investigate the
generalization ability of the players, the 10 sets of 10,000
games are performed and the results are shown in Table III.
The same seed for random numbers in the same set is used
for every player.

The best scored player 37 in experiment 1 still attained
the best score of 0.6274, although the second best player 19
attained somewhat lower score of 0.5582. It seems that player
37 is very good and stable player. The average score of all
players is 0.5302 which is greater than 0.5. Thus, it is thought
that players have generalization ability.

C. Experiment 3 for Collective Intelligence

A collective intelligence player (CIP) is realized by 101
players: Each player decides a move using the player’s WPC.
Each player votes the move. The move which has the maxi-
mum number of votes is selected as the move of CIP. If the
number of votes is tied, a move is randomly selected from tied
votes.

TABLE II. WPC AND RESULTS FOR 101 PLAYERS

No α a b c d e f g h i j fitness std.
1 0.00 2.09 -2.45 0.40 -0.31 -0.27 -3.00 -3.02 1.03 1.10 2.00 0.5700 0.0497
2 0.02 -1.26 8.56 -0.34 0.71 -3.72 -7.39 -4.32 5.72 1.80 2.73 0.5655 0.0580
3 0.04 2.18 -0.18 0.09 -0.01 -0.05 -3.65 -2.83 1.39 1.44 1.48 0.5740 0.0520
4 0.06 1.73 -1.53 0.34 2.17 -0.69 -5.61 -6.13 1.99 2.38 3.07 0.5965 0.0591
5 0.08 -5.27 -2.82 1.10 1.40 -0.87 -7.40 -7.87 2.20 3.04 3.01 0.5985 0.0529
6 0.10 2.34 2.53 -0.09 0.56 -1.12 -2.37 -0.84 1.70 0.69 0.56 0.5720 0.0322
7 0.12 -2.19 0.37 -0.13 1.67 -1.85 -9.20 -7.79 3.73 3.94 3.98 0.5860 0.0399
8 0.14 1.19 3.93 -2.25 3.34 -3.63 -9.82 -7.91 4.39 4.88 4.65 0.5640 0.0346
9 0.16 -9.41 11.21 -2.00 4.34 38.88 -0.53 -0.12 -3.02 4.70 2.16 0.6000 0.0406
10 0.18 2.81 -0.91 0.28 -0.13 -0.16 -1.88 -1.96 0.59 0.74 1.02 0.5790 0.0378
11 0.20 -2.51 -4.45 -1.90 7.96 -0.60 -8.27 -9.56 2.64 3.74 3.22 0.5785 0.0297
12 0.22 5.99 -1.62 0.54 0.94 -0.32 -6.24 -5.29 2.03 2.79 3.13 0.5715 0.0328
13 0.24 2.99 -0.84 0.31 1.20 -0.37 -5.33 -5.48 2.08 2.39 2.63 0.5915 0.0357
14 0.26 3.72 4.11 -0.84 0.35 -2.94 -4.22 -1.46 3.33 1.02 0.85 0.5635 0.0363
15 0.28 7.05 -2.96 0.74 0.17 -0.53 -3.83 -4.05 1.33 1.63 3.26 0.5785 0.0332
16 0.30 -3.62 -2.50 0.56 1.88 -1.22 -6.04 -5.94 1.94 2.21 2.15 0.5780 0.0409
17 0.32 -0.63 -0.92 1.21 1.22 -0.95 -8.40 -9.24 3.10 3.66 4.09 0.6050 0.0482
18 0.34 -1.14 0.91 0.57 -0.01 -1.29 -9.09 -5.86 3.26 3.69 3.65 0.5745 0.0326
19 0.36 3.47 5.70 -0.40 1.89 26.89 -1.30 0.00 -1.85 2.77 1.25 0.6055 0.0335
20 0.38 -6.17 -1.76 0.46 2.21 -0.23 -8.87 -9.17 3.02 3.74 3.65 0.6010 0.0534
21 0.40 1.53 -1.14 0.70 0.63 -0.09 -4.41 -4.55 1.43 1.64 2.98 0.5940 0.0420
22 0.42 0.40 -1.31 0.56 0.95 -0.36 -2.95 -3.10 0.95 1.37 1.49 0.5915 0.0303
23 0.44 2.52 -1.09 1.12 0.26 -0.34 -8.87 -8.07 3.22 3.58 4.10 0.5785 0.0368
24 0.46 1.87 -2.03 0.13 2.45 -0.80 -9.02 -10.22 2.97 3.84 3.79 0.5930 0.0358
25 0.48 -8.83 -5.59 1.37 0.65 -0.95 -15.21 -12.39 6.58 6.90 7.58 0.5685 0.0407
26 0.50 -3.61 -5.52 1.01 0.75 -0.42 -8.24 -8.34 3.59 3.71 4.55 0.5855 0.0352
27 0.52 1.82 -0.01 0.76 0.63 -0.22 -3.90 -4.10 1.27 2.19 2.63 0.5645 0.0263
28 0.54 2.95 -5.39 2.76 -1.87 -3.29 -26.70 -28.22 9.73 11.06 20.09 0.5830 0.0249
29 0.56 5.56 -1.75 0.16 0.68 -0.24 -3.46 -3.80 1.44 1.82 2.14 0.5535 0.0348
30 0.58 2.09 -0.62 0.54 1.04 -0.07 -5.25 -5.31 1.46 2.04 1.86 0.5770 0.0291
31 0.60 3.85 -0.95 0.10 3.48 -1.11 -7.69 -8.91 2.80 3.12 3.54 0.5860 0.0347
32 0.62 1.80 0.21 0.14 1.25 -0.49 -5.62 -4.34 2.24 2.45 2.47 0.5830 0.0260
33 0.64 6.72 6.81 -0.33 0.96 -3.84 -5.70 -1.84 4.46 1.04 1.02 0.5615 0.0272
34 0.66 -0.79 0.31 -3.29 4.99 -0.48 -6.89 -7.48 1.97 2.66 2.41 0.5805 0.0261
35 0.68 -2.00 -2.83 -0.04 1.47 -0.77 -8.55 -9.46 2.57 3.72 3.68 0.5765 0.0376
36 0.70 -0.67 -1.31 0.28 2.48 -0.05 -5.19 -5.70 1.39 2.37 2.47 0.5935 0.0381
37 0.72 53.34 -11.30 20.97 -3.76 -21.61 -2.57 0.05 0.50 -0.26 -0.16 0.6580 0.0129
38 0.74 -1.89 -0.29 2.49 -0.43 -0.79 -9.63 -6.90 4.07 4.22 4.55 0.5655 0.0258
39 0.76 3.03 2.66 -2.74 3.61 -2.23 -6.82 -2.97 4.68 2.04 2.01 0.5670 0.0394
40 0.78 6.52 2.65 -1.67 2.58 -4.01 -6.96 -1.91 5.98 1.44 1.74 0.5560 0.0231
41 0.80 -3.43 -3.91 1.63 0.03 -1.55 -9.97 -10.13 2.83 3.47 6.57 0.5740 0.0207
42 0.82 5.01 -3.29 2.07 0.31 -1.12 -8.36 -8.73 2.68 3.00 5.99 0.5845 0.0190
43 0.84 2.87 0.99 -1.39 2.23 -2.14 -9.77 -3.92 6.15 1.62 1.97 0.5500 0.0220
44 0.86 4.74 3.84 -1.27 1.03 -2.50 -2.88 -0.95 2.56 0.31 0.87 0.5585 0.0190
45 0.88 14.16 1.01 0.88 1.49 -1.37 -5.76 -4.84 2.30 2.43 2.66 0.5775 0.0374
46 0.90 5.20 -5.82 0.10 2.09 -0.16 -8.61 -9.80 2.87 4.05 4.40 0.5715 0.0242
47 0.92 7.59 3.95 0.06 0.50 -4.71 -7.38 -2.01 4.57 0.76 1.66 0.5575 0.0236
48 0.94 8.90 0.27 0.13 1.50 -0.57 -6.10 -4.97 2.49 3.04 3.62 0.5770 0.0362
49 0.96 3.86 -0.39 0.39 0.46 -0.72 -4.06 -3.30 1.76 2.17 2.96 0.5725 0.0307
50 0.98 -1.78 0.56 -1.21 3.40 -3.35 -12.01 -10.78 5.63 6.05 6.42 0.5715 0.0256
51 1.00 2.81 -1.79 1.42 0.32 -1.29 -6.19 -4.78 2.19 3.00 4.28 0.5825 0.0330
52 1.02 1.88 0.89 -3.00 4.72 -0.12 -5.86 -6.16 1.92 2.26 2.06 0.5805 0.0334
53 1.04 2.54 6.15 -1.61 -1.52 -5.31 -6.26 -2.76 5.39 0.16 1.68 0.5750 0.0389
54 1.06 4.26 -2.59 0.64 0.79 0.15 -3.68 -3.78 1.12 1.64 2.55 0.5665 0.0217
55 1.08 0.85 -3.42 -0.26 2.60 -1.49 -9.48 -9.18 3.92 3.93 6.87 0.5665 0.0238
56 1.10 1.97 2.01 -2.27 3.38 -1.17 -6.56 -3.15 4.53 1.86 1.86 0.5545 0.0285
57 1.12 -2.59 -1.92 -0.22 1.41 -0.31 -5.04 -5.79 1.50 2.24 2.52 0.5675 0.0233
58 1.14 3.41 11.07 -3.37 2.92 -6.31 -10.18 -4.09 10.56 1.29 3.93 0.5715 0.0243
59 1.16 10.29 -3.72 0.78 1.17 -0.36 -8.62 -9.51 2.88 3.72 6.41 0.5825 0.0332
60 1.18 5.51 0.00 0.24 1.27 -0.76 -6.24 -4.81 2.48 2.50 2.20 0.5775 0.0371
61 1.20 37.04 4.25 -0.16 2.80 29.76 -0.73 -1.24 -1.68 2.25 2.21 0.5795 0.0281
62 1.22 5.81 -1.93 0.69 0.53 -0.38 -4.09 -4.36 1.28 1.75 1.76 0.5965 0.0430
63 1.24 2.62 -2.77 -1.78 3.57 -1.61 -7.02 -7.33 3.32 3.48 4.07 0.5755 0.0235
64 1.26 1.14 -0.25 0.15 2.97 -0.17 -5.63 -6.94 1.81 2.42 3.32 0.5655 0.0235
65 1.28 1.03 -0.34 -0.12 0.48 -0.33 -3.33 -3.03 1.24 1.43 1.62 0.5635 0.0272
66 1.30 1.62 -0.79 0.37 1.09 -0.43 -4.34 -4.94 1.43 1.84 1.77 0.5765 0.0206
67 1.32 7.23 5.41 -2.56 2.74 -4.72 -4.09 -1.17 4.63 0.45 1.03 0.5680 0.0308
68 1.34 -1.46 -1.79 -0.78 3.71 0.59 -6.04 -7.11 1.75 2.65 2.88 0.5715 0.0258
69 1.36 -2.46 -3.32 -0.14 1.25 -0.65 -6.31 -6.96 1.84 2.87 2.74 0.5725 0.0255
70 1.38 4.16 -0.03 0.08 0.75 -0.07 -3.17 -3.93 0.95 1.49 2.22 0.5710 0.0161
71 1.40 -2.27 0.95 0.91 0.80 -1.54 -7.43 -4.96 2.75 3.24 3.29 0.5705 0.0214
72 1.42 12.59 -1.57 -1.40 2.15 -2.02 -8.09 -8.72 3.74 4.13 4.57 0.5725 0.0162
73 1.44 -0.43 -3.52 0.53 2.29 -0.90 -7.65 -8.80 2.06 2.96 5.30 0.5855 0.0289
74 1.46 0.58 -3.19 0.44 0.87 0.08 -4.23 -4.39 1.35 1.69 3.11 0.5650 0.0302
75 1.48 1.77 -5.28 2.66 0.37 0.82 -10.74 -11.34 4.14 5.58 6.94 0.5610 0.0296
76 1.50 7.96 4.55 -2.08 2.86 -3.11 -7.25 -2.87 6.43 1.85 1.81 0.5515 0.0253
77 1.52 21.73 -2.40 0.42 2.33 -0.30 -9.12 -8.90 2.82 3.03 3.53 0.5685 0.0184
78 1.54 13.56 -1.46 -0.06 1.52 0.46 -4.99 -5.68 2.01 2.09 2.62 0.5435 0.0140
79 1.56 10.08 -1.63 0.22 0.93 -1.62 -7.21 -4.92 2.43 2.55 2.36 0.5810 0.0371
80 1.58 1.97 0.89 -0.49 0.59 -0.85 -2.57 -0.93 1.97 0.48 0.82 0.5525 0.0302
81 1.60 3.53 7.71 -1.98 2.14 -3.19 -5.09 -1.87 4.81 0.51 1.91 0.5545 0.0193
82 1.62 2.40 -1.48 -1.05 2.02 -0.99 -4.63 -4.45 1.78 2.13 2.17 0.5660 0.0324
83 1.64 2.58 -0.69 0.52 0.98 -1.28 -7.26 -6.69 2.57 2.99 3.54 0.5565 0.0203
84 1.66 18.90 9.03 -2.31 3.27 37.96 -2.71 -0.44 -2.06 4.26 1.25 0.5885 0.0206
85 1.68 2.17 0.10 0.62 0.18 -0.49 -2.43 -2.30 0.99 1.04 1.48 0.5720 0.0312
86 1.70 18.57 -1.26 -0.96 2.57 -0.71 -7.35 -9.14 2.64 3.31 2.87 0.5450 0.0126
87 1.72 1.54 -2.34 0.58 0.15 -0.68 -5.81 -5.78 1.49 2.33 3.01 0.5655 0.0271
88 1.74 -2.99 1.39 -1.41 3.61 -0.03 -5.66 -6.64 1.63 2.50 3.45 0.5705 0.0213
89 1.76 3.85 -2.60 0.38 1.99 0.50 -7.15 -7.32 2.70 3.28 3.93 0.5710 0.0207
90 1.78 1.37 -0.55 0.24 0.84 -0.29 -3.73 -3.93 1.50 1.95 1.93 0.5620 0.0260
91 1.80 2.16 0.39 1.82 0.82 -0.59 -6.06 -4.13 2.33 2.98 3.61 0.5555 0.0268
92 1.82 1.81 -0.75 1.63 0.46 -1.18 -7.36 -7.39 2.32 3.09 3.32 0.5635 0.0238
93 1.84 -0.64 -4.95 1.74 1.91 0.85 -6.37 -7.26 -0.13 3.15 2.87 0.5465 0.0224
94 1.86 1.27 0.30 0.58 1.98 0.15 -3.84 -3.54 1.37 1.49 1.45 0.5515 0.0210
95 1.88 -2.38 -0.64 0.60 -0.42 -0.19 -3.72 -3.83 1.32 1.73 1.81 0.5940 0.0251
96 1.90 8.11 3.84 -1.88 1.41 -2.21 -3.07 -1.23 3.13 0.64 1.10 0.5385 0.0234
97 1.92 -0.36 -0.45 0.75 0.82 -0.06 -4.17 -4.75 1.35 1.96 3.37 0.5600 0.0227
98 1.94 -0.05 -1.07 1.30 3.02 -1.95 -14.79 -12.50 4.90 6.11 6.16 0.5745 0.0193
99 1.96 11.05 2.20 0.82 2.82 -1.86 -14.10 -15.42 4.16 5.94 5.05 0.5580 0.0237

100 1.98 4.90 4.01 -2.82 3.59 -4.08 -8.85 -2.93 5.98 1.71 0.50 0.5540 0.0229
101 2.00 2.54 4.10 -0.37 1.14 -1.21 -4.42 -1.33 2.97 0.98 0.87 0.5410 0.0198

average 1.00 3.59 -0.08 0.13 1.53 -0.01 -6.45 -5.66 2.66 2.62 3.09 0.5730 0.0298

TABLE III. THE RESULTS IN 10 SETS OF 10,000 GAMES FOR 101
PLAYERS

No set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8 set 9 set 10 average std.
1 0.5294 0.5321 0.5243 0.5282 0.5275 0.5359 0.5374 0.5348 0.5330 0.5431 0.5326 0.0052
2 0.5109 0.5075 0.5078 0.5169 0.5061 0.5099 0.5181 0.5169 0.5159 0.5091 0.5119 0.0043
3 0.5269 0.5263 0.5272 0.5240 0.5322 0.5200 0.5287 0.5265 0.5293 0.5245 0.5266 0.0031
4 0.5435 0.5321 0.5372 0.5346 0.5366 0.5383 0.5424 0.5435 0.5412 0.5394 0.5389 0.0037
5 0.5382 0.5419 0.5507 0.5464 0.5446 0.5418 0.5424 0.5494 0.5360 0.5452 0.5437 0.0044
6 0.5230 0.5284 0.5296 0.5288 0.5312 0.5194 0.5112 0.5272 0.5282 0.5232 0.5250 0.0057
7 0.5209 0.5172 0.5237 0.5325 0.5294 0.5230 0.5319 0.5299 0.5295 0.5213 0.5259 0.0051
8 0.5133 0.5161 0.5161 0.5016 0.5097 0.5045 0.5058 0.5083 0.4992 0.5143 0.5089 0.0057
9 0.5555 0.5590 0.5507 0.5546 0.5558 0.5511 0.5511 0.5448 0.5531 0.5502 0.5526 0.0037

10 0.5234 0.5242 0.5285 0.5305 0.5320 0.5282 0.5252 0.5310 0.5318 0.5228 0.5278 0.0034
11 0.5179 0.5232 0.5290 0.5282 0.5275 0.5246 0.5188 0.5316 0.5292 0.5256 0.5256 0.0043
12 0.5286 0.5327 0.5367 0.5334 0.5232 0.5332 0.5341 0.5398 0.5344 0.5289 0.5325 0.0044
13 0.5535 0.5415 0.5505 0.5435 0.5499 0.5500 0.5466 0.5387 0.5460 0.5552 0.5475 0.0050
14 0.5082 0.5071 0.5135 0.5095 0.5084 0.5094 0.5112 0.4992 0.5034 0.5117 0.5082 0.0040
15 0.5462 0.5405 0.5410 0.5377 0.5412 0.5422 0.5415 0.5261 0.5454 0.5395 0.5401 0.0053
16 0.5236 0.5201 0.5248 0.5241 0.5179 0.5293 0.5169 0.5253 0.5238 0.5254 0.5231 0.0036
17 0.5428 0.5474 0.5407 0.5329 0.5367 0.5465 0.5452 0.5396 0.5422 0.5393 0.5413 0.0043
18 0.5344 0.5337 0.5249 0.5264 0.5413 0.5419 0.5381 0.5329 0.5367 0.5383 0.5349 0.0054
19 0.5517 0.5534 0.5461 0.5707 0.5487 0.5597 0.5612 0.5615 0.5624 0.5661 0.5582 0.0075
20 0.5396 0.5446 0.5532 0.5387 0.5474 0.5493 0.5485 0.5451 0.5409 0.5406 0.5448 0.0046
21 0.5374 0.5393 0.5442 0.5423 0.5437 0.5395 0.5303 0.5456 0.5429 0.5380 0.5403 0.0043
22 0.5333 0.5316 0.5284 0.5286 0.5336 0.5369 0.5443 0.5387 0.5423 0.5287 0.5346 0.0054
23 0.5344 0.5341 0.5291 0.5271 0.5291 0.5305 0.5280 0.5250 0.5275 0.5354 0.5300 0.0033
24 0.5508 0.5514 0.5536 0.5539 0.5586 0.5542 0.5563 0.5477 0.5590 0.5487 0.5534 0.0036
25 0.5392 0.5304 0.5235 0.5320 0.5329 0.5295 0.5330 0.5312 0.5396 0.5322 0.5324 0.0044
26 0.5343 0.5251 0.5300 0.5325 0.5324 0.5396 0.5339 0.5308 0.5466 0.5367 0.5342 0.0055
27 0.5360 0.5323 0.5350 0.5292 0.5218 0.5268 0.5291 0.5193 0.5376 0.5348 0.5302 0.0058
28 0.5415 0.5279 0.5357 0.5336 0.5397 0.5354 0.5281 0.5393 0.5427 0.5369 0.5361 0.0048
29 0.5311 0.5270 0.5240 0.5389 0.5283 0.5179 0.5348 0.5299 0.5336 0.5292 0.5295 0.0056
30 0.5347 0.5315 0.5323 0.5308 0.5353 0.5315 0.5361 0.5261 0.5367 0.5346 0.5330 0.0030
31 0.5548 0.5468 0.5602 0.5505 0.5520 0.5393 0.5590 0.5514 0.5457 0.5496 0.5509 0.0059
32 0.5393 0.5383 0.5449 0.5339 0.5442 0.5478 0.5416 0.5346 0.5375 0.5465 0.5409 0.0046
33 0.5241 0.5262 0.5297 0.5301 0.5293 0.5285 0.5222 0.5290 0.5285 0.5256 0.5273 0.0025
34 0.5474 0.5471 0.5415 0.5488 0.5441 0.5505 0.5417 0.5402 0.5457 0.5514 0.5458 0.0037
35 0.5373 0.5464 0.5413 0.5353 0.5314 0.5424 0.5400 0.5433 0.5385 0.5405 0.5396 0.0040
36 0.5302 0.5315 0.5291 0.5274 0.5353 0.5289 0.5265 0.5352 0.5320 0.5309 0.5307 0.0028
37 0.6294 0.6257 0.6259 0.6305 0.6257 0.6211 0.6323 0.6234 0.6298 0.6300 0.6274 0.0034
38 0.5205 0.5215 0.5264 0.5260 0.5296 0.5209 0.5237 0.5288 0.5254 0.5262 0.5249 0.0030
39 0.5140 0.5078 0.5106 0.5123 0.5086 0.5081 0.5097 0.5161 0.5133 0.5071 0.5108 0.0029
40 0.5020 0.5103 0.5109 0.5095 0.5101 0.5096 0.5082 0.5020 0.5027 0.4990 0.5064 0.0042
41 0.5438 0.5366 0.5488 0.5411 0.5422 0.5438 0.5446 0.5430 0.5431 0.5409 0.5428 0.0029
42 0.5430 0.5421 0.5360 0.5302 0.5461 0.5389 0.5324 0.5480 0.5354 0.5442 0.5396 0.0057
43 0.5042 0.5132 0.5088 0.5085 0.4997 0.5134 0.5120 0.5069 0.5153 0.5179 0.5100 0.0052
44 0.5183 0.5318 0.5170 0.5262 0.5286 0.5201 0.5310 0.5156 0.5221 0.5203 0.5231 0.0056
45 0.5349 0.5403 0.5343 0.5443 0.5283 0.5349 0.5380 0.5416 0.5368 0.5386 0.5372 0.0042
46 0.5468 0.5343 0.5411 0.5404 0.5382 0.5453 0.5454 0.5387 0.5375 0.5365 0.5404 0.0040
47 0.5186 0.5131 0.5081 0.5051 0.5051 0.5183 0.5130 0.5106 0.5098 0.5129 0.5115 0.0045
48 0.5289 0.5170 0.5299 0.5222 0.5318 0.5319 0.5221 0.5246 0.5272 0.5282 0.5264 0.0046
49 0.5242 0.5279 0.5265 0.5315 0.5273 0.5303 0.5241 0.5226 0.5235 0.5256 0.5264 0.0028
50 0.5290 0.5220 0.5281 0.5406 0.5315 0.5322 0.5367 0.5261 0.5298 0.5204 0.5296 0.0058
51 0.5112 0.5192 0.5092 0.5171 0.5161 0.5231 0.5110 0.5286 0.5152 0.5200 0.5171 0.0057
52 0.5463 0.5468 0.5309 0.5392 0.5400 0.5413 0.5401 0.5421 0.5462 0.5505 0.5423 0.0052
53 0.5139 0.5092 0.5121 0.5157 0.5117 0.5151 0.5179 0.5219 0.5141 0.5070 0.5139 0.0040
54 0.5342 0.5405 0.5336 0.5280 0.5406 0.5311 0.5401 0.5246 0.5298 0.5351 0.5338 0.0052
55 0.5274 0.5277 0.5263 0.5302 0.5210 0.5264 0.5281 0.5340 0.5288 0.5354 0.5285 0.0039
56 0.5094 0.5133 0.5155 0.5099 0.5020 0.5080 0.5085 0.5000 0.5094 0.5114 0.5087 0.0045
57 0.5442 0.5349 0.5251 0.5287 0.5405 0.5318 0.5317 0.5367 0.5377 0.5362 0.5348 0.0053
58 0.5170 0.5159 0.5168 0.5178 0.5184 0.5212 0.5145 0.5192 0.5071 0.5222 0.5170 0.0040
59 0.5444 0.5412 0.5530 0.5357 0.5425 0.5390 0.5422 0.5366 0.5425 0.5353 0.5412 0.0049
60 0.5369 0.5361 0.5341 0.5303 0.5321 0.5288 0.5186 0.5257 0.5347 0.5367 0.5314 0.0055
61 0.5392 0.5372 0.5414 0.5304 0.5403 0.5373 0.5415 0.5367 0.5449 0.5419 0.5391 0.0038
62 0.5444 0.5413 0.5419 0.5327 0.5392 0.5375 0.5373 0.5382 0.5374 0.5301 0.5380 0.0040
63 0.5391 0.5310 0.5308 0.5292 0.5333 0.5503 0.5390 0.5374 0.5358 0.5337 0.5360 0.0058
64 0.5144 0.5153 0.5265 0.5173 0.5122 0.5236 0.5265 0.5075 0.5151 0.5178 0.5176 0.0059
65 0.5402 0.5370 0.5278 0.5286 0.5279 0.5327 0.5371 0.5292 0.5324 0.5309 0.5324 0.0042
66 0.5497 0.5452 0.5423 0.5521 0.5520 0.5526 0.5609 0.5554 0.5471 0.5502 0.5508 0.0050
67 0.5231 0.5212 0.5207 0.5189 0.5164 0.5174 0.5223 0.5158 0.5195 0.5250 0.5200 0.0028
68 0.5325 0.5231 0.5244 0.5252 0.5262 0.5229 0.5317 0.5351 0.5272 0.5347 0.5283 0.0045
69 0.5353 0.5266 0.5215 0.5224 0.5299 0.5236 0.5280 0.5262 0.5082 0.5317 0.5253 0.0070
70 0.5281 0.5243 0.5225 0.5242 0.5264 0.5257 0.5325 0.5294 0.5181 0.5301 0.5261 0.0039
71 0.5214 0.5302 0.5372 0.5334 0.5295 0.5300 0.5269 0.5242 0.5188 0.5280 0.5280 0.0052
72 0.5291 0.5247 0.5272 0.5198 0.5312 0.5278 0.5284 0.5219 0.5243 0.5262 0.5261 0.0033
73 0.5400 0.5320 0.5375 0.5306 0.5407 0.5320 0.5407 0.5335 0.5361 0.5370 0.5360 0.0036
74 0.5284 0.5334 0.5180 0.5261 0.5271 0.5254 0.5317 0.5291 0.5242 0.5264 0.5270 0.0040
75 0.5222 0.5279 0.5153 0.5092 0.5331 0.5286 0.5301 0.5179 0.5202 0.5182 0.5223 0.0071
76 0.5101 0.5135 0.5153 0.5095 0.5160 0.5216 0.5187 0.5170 0.5109 0.5150 0.5148 0.0037
77 0.5277 0.5181 0.5301 0.5256 0.5238 0.5238 0.5232 0.5330 0.5227 0.5221 0.5250 0.0041
78 0.5173 0.5242 0.5196 0.5161 0.5276 0.5329 0.5148 0.5246 0.5195 0.5317 0.5228 0.0061
79 0.5314 0.5180 0.5294 0.5282 0.5228 0.5315 0.5338 0.5397 0.5269 0.5314 0.5293 0.0056
80 0.5196 0.5199 0.5220 0.5196 0.5225 0.5288 0.5175 0.5289 0.5197 0.5310 0.5230 0.0046
81 0.5283 0.5257 0.5302 0.5240 0.5313 0.5342 0.5259 0.5243 0.5232 0.5207 0.5268 0.0039
82 0.5289 0.5337 0.5341 0.5289 0.5326 0.5301 0.5332 0.5326 0.5334 0.5315 0.5319 0.0019
83 0.5203 0.5332 0.5270 0.5335 0.5310 0.5214 0.5316 0.5266 0.5290 0.5291 0.5283 0.0043
84 0.5420 0.5431 0.5474 0.5466 0.5495 0.5471 0.5465 0.5423 0.5407 0.5392 0.5444 0.0032
85 0.5130 0.5216 0.5143 0.5162 0.5131 0.5125 0.5162 0.5332 0.5131 0.5178 0.5171 0.0060
86 0.5169 0.5085 0.5172 0.5112 0.5180 0.5141 0.5146 0.5129 0.5107 0.5162 0.5140 0.0030
87 0.5116 0.5150 0.5135 0.5149 0.5092 0.5089 0.5181 0.5091 0.5134 0.5101 0.5124 0.0029
88 0.5175 0.5165 0.5187 0.5226 0.5162 0.5163 0.5162 0.5172 0.5075 0.5171 0.5166 0.0035
89 0.5292 0.5259 0.5314 0.5313 0.5304 0.5310 0.5301 0.5347 0.5305 0.5208 0.5295 0.0036
90 0.5252 0.5410 0.5310 0.5413 0.5363 0.5308 0.5333 0.5299 0.5364 0.5293 0.5335 0.0050
91 0.5169 0.5241 0.5196 0.5181 0.5272 0.5205 0.5200 0.5153 0.5148 0.5178 0.5194 0.0036
92 0.5370 0.5346 0.5369 0.5329 0.5403 0.5287 0.5326 0.5305 0.5306 0.5340 0.5338 0.0033
93 0.5183 0.5152 0.5149 0.5161 0.5101 0.5179 0.5102 0.5167 0.5170 0.5167 0.5153 0.0028
94 0.5177 0.5211 0.5226 0.5204 0.5141 0.5252 0.5129 0.5219 0.5243 0.5205 0.5201 0.0038
95 0.5375 0.5293 0.5369 0.5368 0.5313 0.5313 0.5272 0.5253 0.5375 0.5281 0.5321 0.0045
96 0.5251 0.5200 0.5204 0.5314 0.5120 0.5110 0.5181 0.5309 0.5215 0.5200 0.5210 0.0064
97 0.5288 0.5270 0.5274 0.5408 0.5387 0.5336 0.5464 0.5438 0.5325 0.5375 0.5357 0.0065
98 0.5263 0.5353 0.5316 0.5344 0.5382 0.5341 0.5357 0.5278 0.5353 0.5302 0.5329 0.0036
99 0.5334 0.5218 0.5337 0.5308 0.5239 0.5127 0.5352 0.5214 0.5252 0.5314 0.5270 0.0068

100 0.5154 0.5257 0.5199 0.5163 0.5053 0.5167 0.5195 0.5137 0.5095 0.5110 0.5153 0.0055
101 0.5102 0.5138 0.5106 0.5196 0.5197 0.5063 0.5076 0.5152 0.5145 0.5154 0.5133 0.0043

average 0.5304 0.5297 0.5301 0.5298 0.5303 0.5303 0.5309 0.5301 0.5299 0.5306 0.5302 0.0045

Table IV shows the results of CIP (101 players) and the
results of CIP without the best player 37 (100 players) under
the same condition of experiment 2. The average results of 101
players in Table III is also included for comparison. In every
set of games, CIP and CIP without player 37 attained better
results compared with the average results. CIP without player
37 outperformed CIP on average although the difference is
very small. It is thought that the effect of the best player can
be negligible.

Fig. 6 shows the scores of CIP, CIP without player 37
and all players in the 10 sets. A thick line shows the results
of CIP and CIP without player 37, a nearly straight line
shows the average scores of all players, and the line over 0.6
shows the results of player 37. It is clear that CIP with and
without player 37 outperformed many players in 101 players
and outperformed the average scores in all sets. Therefore, CIP
is very good and stable player although player 37 outperformed
all players including CIP with and without player 37.

It is difficult to know the best player among many players in
advance because the learning task is highly noisy and the best
player in the learning games does not always attain the best
result in unlearned games. On the contrary, in this experiment,
CIP player is always better than the average player. Thus, it is
thought that utilizing collective intelligence of many players
is effective compared with selecting a player randomly.

D. Discussion

Player 37 is a very strong player against standard player.
However, it is not sure whether player 37 is a strong player in
general. Another experiment, where CIP plays with player 37,
is performed in order to compare the strength of CIP and player
37. Table V shows the results of CIP and the results of CIP
without player 37 against player 37 under the same condition
of experiment 3. CIP attained the average winning percentage
0.5073 and CIP without player 37 attained the average winning
percentage 0.5098 against player 37. It is thought that CIP and
CIP without player 37 is stronger than player 37.

It is possible to learn a stronger player than a particular
player by playing with the player. However, it is difficult to
know the learned player is strong in general. In this study, a
very strong player 37 against standard player can be learned
and the winning percentage against standard player of player
37 is much larger than that of CIP. Nevertheless CIP player
can defeat player 37 on average. Thus, it is thought that CIP
is more stable player than player 37 and can defeat not only
standard player but also player 37.

VI. CONCLUSIONS

Collective intelligence is one of very important issues
in computational intelligence. In this study, the effect of
collective intelligence is investigated in Othello players who
learn the game strategy based on an unsupervised evolutionary
approach. Experiments show that the collective intelligence by
majority vote of 101 players outperformed the average players
in highly noisy task of learning Othello players.

In the future, the following studies will be performed:

• Learning players played with one standard player
in this study. In real life, players will learn game

TABLE IV. THE RESULTS IN 10 SETS OF 10,000 GAMES FOR COLLECTIVE INTELLIGENCE PLAYER

No set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8 set 9 set 10 average std.
CIP 0.5512 0.5423 0.5513 0.5477 0.5476 0.5410 0.5570 0.5520 0.5410 0.5401 0.5471 0.0055

CIP w/o 37 0.5527 0.5466 0.5476 0.5483 0.547 0.5473 0.5524 0.5585 0.5403 0.5556 0.5496 0.0050
average 0.5304 0.5297 0.5301 0.5298 0.5303 0.5303 0.5309 0.5301 0.5299 0.5306 0.5302 0.0045

 0.45

 0.5

 0.55

 0.6

 0.65

 1 2 3 4 5 6 7 8 9 10

S
c
o
re

Set

Player 37
Average

CIP
CIP w/o 37

Fig. 6. Score of CIP and all players in the 10 sets.

TABLE V. THE RESULTS IN 10 SETS OF 10,000 GAMES FOR COLLECTIVE INTELLIGENCE PLAYER AGAINST PLAYER 37

No set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8 set 9 set 10 average std.
CIP 0.5152 0.5101 0.5148 0.5139 0.5054 0.4998 0.5067 0.5009 0.5083 0.4978 0.5073 0.0057

CIP w/o 37 0.5029 0.5102 0.5130 0.5145 0.5079 0.5092 0.4988 0.5198 0.5068 0.5148 0.5098 0.0056
average 0.5091 0.5102 0.5139 0.5142 0.5067 0.5045 0.5028 0.5104 0.5076 0.5063 0.5085 0.0056

strategies by playing with various types of players in a
game society. It is interesting to consider the relation
between collective intelligence and an artificial game
society.

• All players had the same weight to vote the next move
in this study. If proper weights for each player can be
learned, the performance of collective intelligence will
be improved.

ACKNOWLEDGMENT

This research is supported in part by Grant-in-Aid for
Scientific Research (C) (No. 24500177, 26350443) of Japan
society for the promotion of science and the 2014 Research
Fund (ChosaKenkyu-Hi) of the Center for the Co-creation of
Hiroshima’s Future, Hiroshima Shudo University.

REFERENCES

[1] C. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, pp. 1–43, 2012.

[2] A. Pentland, “Collective intelligence,” IEEE Computational Intelligence
Magazine, vol. 1, no. 3, pp. 9–12, 2006.

[3] P. Marko and G. M. Haworth, “The Kasparov-World match,” ICGA
Journal, vol. 22, no. 4, pp. 236–238, 1999.

[4] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[5] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary
algorithms for reinforcement learning,” Journal of Artificial Intelligence
Research (JAIR), vol. 11, pp. 241–276, 1999.

[6] G. Tesauro, “Practical issues in temporal difference learning,” Machine
Learning, vol. 8, pp. 257–277, 1992.

[7] G. Tesauro, “Temporal difference learning and TD-gammon,” Commu-
nications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[8] S. Thrun, “Learning to play the game of chess,” in Advances in
neural information processing systems, D. G.Tesauro and T.Leen, Eds.
Morgan Kaufmann Publishers, 1995, vol. 7.

[9] M. van der Ree and M. Wiering, “Reinforcement learning in the game
of Othello: Learning against a fixed opponent and learning from self-
play,” in IEEE Symposium on Adaptive Dynamic Programming And
Reinforcement Learning 2013, Apr. 2013, pp. 108–115.

[10] J. B. Pollack and A. D. Blair, “Co-evolution in the successful learning of
backgammon strategy,” Machine Learning, vol. 32, no. 3, pp. 225–240,
1998.

[11] K. Chellapilla and D. Fogel, “Evolving neural networks to play checkers
without relying on expert knowledge,” IEEE Transactions on Neural
Networks, vol. 10, no. 6, pp. 1382–1391, Nov. 1999.

[12] K. Chellapilla and D. Fogel, “Evolving an expert checkers playing
program without using human expertise,” IEEE Transactions on Evo-
lutionary Computation, vol. 5, no. 4, pp. 422–428, Aug. 2001.

[13] S. Lucas, “Investigating learning rates for evolution and temporal dif-
ference learning,” in IEEE Symposium On Computational Intelligence
and Games 2008, Dec. 2008, pp. 1–7.

[14] M. Szubert, W. Jaskowski, and K. Krawiec, “Coevolutionary temporal
difference learning for Othello,” in IEEE Symposium on Computational
Intelligence and Games 2009, Sep. 2009, pp. 104–111.

[15] L. Pena, S. Ossowski, J. Pena, and S. Lucas, “Learning and evolving
combat game controllers,” in 2012 IEEE Conference on Computational
Intelligence and Games (CIG), Sep. 2012, pp. 195–202.

[16] T.Takahama and S.Sakai, “Learning game strategy by multi-agent
td players,” in Proc. of 2nd International Conference on Software
Engineering, Artificial Intelligence, Networking & Parallel/Distributed
Computing, Aug. 2001, pp. 731–738.

[17] T.Takahama and S.Sakai, “Learning game strategy in an artificial
game society,” in Proc. of Pan-Yellow-Sea International Workshop on
Information Technologies for Network Era 2002, Mar. 2002, pp. 172–
179.

[18] T. Obata, T. Sugiyama, K. Hoki, and T. Ito, “Consultation algorithm in
shogi: Can a set of players create a single strong player?” in The 14th
Game Programming Workshop, Nov. 2009, (in Japanese).

[19] L. S. Marcolino and H. Matsubara, “Multi-agent Monte Carlo Go,” in
The 10th International Conference on Autonomous Agents and Multi-
agent Systems, ser. AAMAS ’11, vol. 1. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2011, pp.
21–28.

[20] M. Enzenberger, M. Muller, B. Arneson, and R. Segal, “Fuego — an
open-source framework for board games and Go engine based on Monte
Carlo tree search,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 2, no. 4, pp. 259–270, 2010.

[21] K. Krawiec and M. G. Szubert, “Learning N-tuple networks for Oth-
ello by coevolutionary gradient search,” in Proc. of the 13th annual
conference on Genetic and evolutionary computation. ACM, 2011,
pp. 355–362.

[22] T. Yoshioka, S. Ishii, and M. Ito, “Strategy acquisition for the game
Othello based on reinforcement learning,” IEICE Transactions on
Information and Systems, vol. 82, no. 12, pp. 1618–1626, 1999.

[23] P. Hingston and M. Masek, “Experiments with Monte Carlo Othello,”
in IEEE Congress on Evolutionary Computation 2007, Sep. 2007, pp.
4059–4064.

[24] R. Storn and K. Price, “Differential evolution – A simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[25] K. Price, R. Storn, and J. A. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization. Springer, 2005.

[26] U. K. Chakraborty, Ed., Advances in Differential Evolution. Springer,
2008.

