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Abstract The penalty function method has been widely

used to solve constrained optimization problems. In the
method, an extended objective function, which is the

sum of the objective value and the constraint viola-

tion weighted by the penalty coefficient, is optimized.

However, it is difficult to control the coefficient prop-

erly because the proper control depends on each prob-

lem. Recently, the equivalent penalty coefficient (EPC)

method, which is a new adaptive penalty method for

population-based optimization algorithms (POAs), has

been proposed. The EPC method can be applied to

POAs where a new solution is compared with the old so-

lution. The EPC value, which makes the two extended

objective values of the solutions the same, is used to

control the coefficient. In this study, we propose to ap-

ply the EPC method to particle swarm optimization

(PSO) where a new solution is compared with the best

solution found so far. In order to improve the perfor-

mance of constrained optimization, a mutation opera-

tion is also proposed. The proposed method is exam-

ined using two topologies of PSO. The advantage of

the proposed method is shown by solving well-known

constrained optimization problems and comparing the

results with those obtained by PSO with a standard

constraint-handling technique.
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1 Introduction

Constrained optimization problems, especially nonlin-

ear constrained optimization problems, where objective

functions are minimized under given constraints, are

very important and frequently appear in the real world.

There exist many studies on solving constrained op-

timization problems using population-based optimiza-

tion algorithms (POAs) such as evolutionary algorithms

(EAs) [1–3] and particle swarm optimization (PSO) [4].

POAs basically lack a mechanism to incorporate the

constraints of a given problem in the fitness value of in-

dividuals. Thus, many studies have been dedicated to

handle the constraints in POAs.

The penalty function method has been widely used

for solving constrained optimization problems. In the
method, an extended objective function is optimized

where the function is defined by the sum of the objec-

tive value and the constraint violation weighted by the

penalty coefficient. Feasible solutions can be found by

increasing the penalty coefficient into infinity theoret-

ically. However, it is difficult to control the coefficient
properly because proper control of the coefficient varies

in each problem and the search process. Recently, the

equivalent penalty coefficient (EPC) method was pro-

posed for adaptive control of the penalty coefficient in

POAs [5]. An EPC value is defined in POAs where a

new solution is compared with the old solution. For ex-

ample, a child individual is compared with the parent

individual in differential evolution (DE) and a new po-

sition after moving is compared with the personal best

position found so far in PSO. The EPC value is the

penalty coefficient value that makes the two extended

objective values of the old solution and the new solution

the same when the objective value and the constraint

violation are in a trade-off relationship. In POAs, there
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are plural EPCs in a population in general. Search that

gives priority to the objective value and the constraint
violation is realized by selecting a small EPC and a

large EPC, respectively. The adaptive control of the

penalty coefficient can be realized by selecting an ap-

propriate EPC value.

In this study, we propose to apply the EPC method

to PSO, whereas in [5] the EPC method was applied to

DE. In order to improve the performance of constrained

optimization, a mutation operation is also proposed.

The proposed method is examined using two topologies

of PSO such as the fully-connected topology and the

ring topology. The advantage of the proposed method

is shown by solving well-known constrained optimiza-

tion problems and comparing the results with those

obtained by PSO with a standard constraint-handling

technique.

In Section 2, constrained optimization problems are
defined and constrained optimization methods includ-

ing the penalty function method are briefly reviewed.

PSO is explained in Section 3. The proposed method

is described in Section 4. In Section 5, experimental re-

sults on constrained problems are shown and the results

of the proposed method are compared with those of a

standard method. Finally, conclusions are described in

Section 6.

2 Related Works

2.1 Constrained Optimization Problems

The general constrained optimization problem with in-

equality, equality, upper bound and lower bound con-

straints is defined as follows:

minimize f(x),

subject to gj(x) ≤ 0, j = 1, . . . , q,

hj(x) = 0, j = q + 1, . . . ,m,

li ≤ xi ≤ ui, i = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vec-

tor of decision variables, f(x) is an objective function,

gj(x) ≤ 0 are q inequality constraints and hj(x) = 0 are

m− q equality constraints. The functions f, gj and hj

are linear or nonlinear real-valued functions. The values

ui and li are the upper and lower bounds of xi, respec-

tively. The upper and lower bounds define the search

space S. All constraints define the feasible region F .

Feasible solutions exist in F ⊆ S.

2.2 Constrained Optimization Methods

POAs for constrained optimization can be classified

into several categories according to the way the con-

straints are treated as follows [3]:

1. Constraints are only used to see whether a search

point is feasible or not. Approaches in this cate-

gory are usually called death penalty methods. In

this category, the search process begins with one or

more feasible points and continues to search for new

points within the feasible region. When a new search

point is generated and the point is not feasible, the

point is repaired or discarded. When the feasible re-

gion is very small, generating initial feasible points

is difficult and computationally demanding.

2. The constraint violation, which is the sum of the vi-

olation of all constraint functions, is combined with

the objective function. The penalty function method

is in this category [6–9]. In the penalty function
method, an extended objective function is defined

by adding the constraint violation to the objective

function as a penalty. The optimization of the ob-

jective function and the constraint violation is real-

ized by the optimization of the extended objective

function. The main difficulty of the penalty function

method is the selection of an appropriate value for

the penalty coefficient that adjusts the strength of

the penalty. If the penalty coefficient is large, fea-

sible solutions can be obtained, but the optimiza-

tion of the objective function will be insufficient. On

the contrary, if the penalty coefficient is small, high

quality (but infeasible) solutions can be obtained

because it is difficult to decrease the constraint vi-

olation. In order to solve the difficulty, some meth-

ods, where the penalty coefficient is adaptively con-

trolled, are proposed [5, 10,11].

3. The constraint violation and the objective function

are used separately. In this category, both the con-

straint violation and the objective function are op-

timized by a lexicographic order in which the con-

straint violation precedes the objective function. The

rule of comparison where the constraint violation

precedes the objective function is called feasibility

rule and is a standard constraint-handling technique.

The comparison rule according to the feasibility rule

is as follows: If two solutions are feasible, the one

with the smaller objective value is better. If one so-

lution is feasible and the other is infeasible, the feasi-

ble one is better. If both solutions are infeasible, the

one with the smaller constraint violation is better.

Also, the rule can be expressed as ”If one solution

has smaller constraint violation than the other, the

solution is better. Otherwise the one with smaller
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objective value is better”. Note that the feasibility

rule is equivalent to the penalty function method
with the penalty coefficient ρ = ∞. Deb [12] pro-

posed a method that adopts the extended objective

function, which realizes the lexicographic ordering.

Takahama and Sakai proposed the α constrained

method [13] and the ε constrained method [14] that

adopt a lexicographic ordering with relaxation of the

constraints. Runarsson and Yao [15] proposed the

stochastic ranking method that adopts the stochas-

tic lexicographic order, which ignores the constraint

violation with some probability. Mezura-Montes and

Coello [16] proposed a comparison mechanism that

is equivalent to the lexicographic ordering. Venka-

traman and Yen [17] proposed a two-step optimiza-

tion method, which first optimizes the constraint vi-

olation and then the objective function. These meth-

ods were successfully applied to various problems.

4. The constraints and the objective function are opti-

mized by multiobjective optimization methods. In

this category, the constrained optimization prob-

lems are solved as the multiobjective optimization

problems in which the objective function and the

constraint functions are objectives to be optimized

[18–23]. But in many cases, solving multiobjective

optimization problems is a more difficult and expen-

sive task than solving single objective optimization

problems.

5. Hybridization methods. In this category, constrained

problems are solved by combining some of the above

mentioned methods. Mallipeddi and Suganthan [24]

proposed a hybridization of the methods in the cat-

egories 2, 3 and 4.

In this study, the category 2 is paid attention to. The

EPC method is utilized for constrained optimization by

PSO.

2.3 Penalty Function Methods

In the constrained optimization, it is necessary to op-

timize the objective function and the constraint viola-

tion simultaneously. In the penalty function method,

the constrained optimization problem is converted to

the following unconstrained optimization problem by

adding the constraint violation ϕ(x) weighted by the

penalty coefficient to the objective function f(x) as a

penalty.

F (x) = f(x) + ρϕ(x) (2)

where F (·) is the extended objective function and ρ

is the penalty coefficient (ρ > 0). By increasing the

penalty coefficient towards infinity, the constraint vi-

olation converges to 0, and a feasible solution can be

obtained.

The constraint violation ϕ(x) satisfies the following:{
ϕ(x) = 0, if x ∈ F
ϕ(x) > 0, if x ̸∈ F (3)

Some types of constraint violations, which are adopted

as a penalty in the penalty function method, can be de-

fined as follows:

ϕ(x) = max{max
j

{0, gj(x)},max
j

|hj(x)|} (4)

ϕ(x) =
∑
j

(max{0, gj(x)})p +
∑
j

|hj(x)|p (5)

where p is a positive number. In this study, Eq. (5) is

used with p = 1.

There are three types of the penalty approaches:

static penalty, dynamic penalty and adaptive penalty

approaches. The value of the penalty coefficient is fixed

in the static penalty approach, and it is changed dy-

namically according to the number of generations or

iterations in the dynamic penalty approach. One needs

to select a proper fixed value or proper changing sched-

ule by trial and error, because the proper value and the

proper schedule depend on the problem to be solved. In

the adaptive penalty approach, the coefficient is changed

based on information obtained from the population of

solutions. The problem with the adaptive penalty ap-

proach is that some parameters for adaptive control

of the penalty coefficient are introduced and proper

parameter values still depend on the problems to be

solved. Some approaches without the parameters are

proposed. In [25], the normalization of the objective

function and the constraint functions is proposed as

follows:

f̃(x) =
f(x)− fmin

fmax − fmin
(6)

where fmin and fmax are the minimum value and the

maximum value of f in the population, respectively.

ṽ(x) =
1

m

m∑
j=1

vj(x)

vj,max
(7)

vj(x) =

{
max{0, gj(x)}, j = 1, · · · , q
|hj(x)|, j = q + 1, · · · ,m (8)

where vj,max is the maximum value of vj in the popu-

lation.

F (x) =


f̃(x), if x ∈ F
ṽ(x), if Rf = 0√

f̃(x)2 + ṽ(x)2 +A(x), otherwise

(9)

where Rf is the rate of feasible solutions in the popu-

lation and A(x) = (1−Rf )ṽ(x) +Rf f̃(x).
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In [26], balancing the objective value and the con-

straint violations is proposed as follows:

F (x) =

{
f(x), if x ∈ F
f̃(x) +

∑m
j=1 kjvj(x), otherwise

(10)

f̃(x) =

{
f(x), if f(x) > f̄
f̄ , otherwise

(11)

where f̄ is the average of f in the population.

kj = |f̄ | v̄j∑m
l=1 v̄

2
l

(12)

where v̄j is the average of vj in the population.

The EPC method will be explained in Section 4.

3 Particle Swarm Optimization

An animal such as an ant, a fish, and a bird has limited

memory and ability to perform simple actions. In con-

trast, a group of animals such as an ant swarm, a fish

school, and a bird flock can take complex or intelligent

actions such as avoiding predators and seeking foods ef-

ficiently. Swarm intelligence is defined as the collective

actions of agents that act autonomously and communi-

cate each other. PSO [27,28] is an optimization method

based on swarm intelligence which is inspired by the

movement of a bird flock. PSO imitates the movement

to solve optimization problems and is considered as a

population-based stochastic search method or POA.

Searching procedures by PSO can be described as

follows: A group of agents, or a population minimizes

the objective function f . At any time t, each agent i

knows its current position xt
i and velocity vt

i. It also

remembers its personal best visited position found so

far x∗
i and the objective value pbesti.

x∗
i = arg min

τ=0,1,···,t
f(xτ

i ), pbesti = f(x∗
i ) (13)

Two models, gbest model and lbest model have been

proposed [29,30]. In the gbest model, every agent knows

the best visited position x∗
G in all agents and its objec-

tive value gbest.

x∗
G = argmin

i
f(x∗

i ), gbest = f(x∗
G) (14)

In the lbest model, each agent knows the best visited

position x∗
l in the neighbors and its objective value

lbesti, where the neighbors are defined by a topology

such as ring, mesh, star and tree topology.

x∗
l = arg min

k∈Ni

f(x∗
k), lbesti = f(x∗

l ) (15)

where Ni is the set of neighbor agents to i. The velocity

of the agent i at time t+ 1 is defined as follows:

vt+1
ij = wvtij + c1 rand1ij (x

∗
ij − xt

ij) (16)

+ c2 rand2ij (x
∗
lj − xt

ij)

where l = G in the gbest model, w is an inertia weight

and randkij is a uniform random number in [0, 1] which

is generated in each dimension. c1 is a cognitive param-

eter and c2 is a social parameter which represent the

weight of the movement to the personal best and the

group/neighbors best, respectively. Usually, the maxi-

mum velocity V max
j is specified to avoid too large ve-

locity and |vij | ≤ V max
j is satisfied.

The position of the agent i at time t+ 1 is given as

follows:

xt+1
i = xt

i + vt+1
i (17)

In linearly decreasing inertia weight (LDIW) method

[31], the inertia weight w is linearly decreasing with the

number of iterations as follows:

w = wmax − (wmax − wmin)
t

Tmax
(18)

where wmax and wmin are the maximum weight and

the minimum weight for w, respectively. Tmax is the

maximum number of iterations. Recommended values

are wmax=0.9, wmin=0.4, c1=c2=2 and V max
j =uj .

In constriction model [32], Eq.(16) is modified to

guarantee the convergence of agents to a local optimum

as follows:

vt+1
ij = χ[vtij + c1 rand1ij (x

∗
ij − xt

ij) (19)

+ c2 rand2ij (x
∗
Gj − xt

ij)]

χ =
2

φ− 2 +
√

φ2 − 4φ
(20)

φ = c1 + c2, φ > 4 (21)

In [33], it is shown that the constriction model with

χ=0.729 and c1=c2=2.05 is equivalent to Eq.(16) with

w=0.729 and c1=c2=0.729×2.05 =1.49445 and was per-

formed well with using V max
j =uj .

In this study, the constriction model is used for solv-

ing optimization problems.

4 Proposed method

4.1 Equivalent Penalty Coefficient (EPC) Method

Let assume the POAs where a new solution x′
i is com-

pared with the old solution xi and the old solution is

replaced with the new solution only if the new solu-

tion is better than the old solution. When both of the

objective value and the constraint violation of x′
i are

better than those of xi, the value of the extended ob-

jective function of x′
i is always better than that of xi,

or F (x′) < F (x) for any ρ, and vice versa. Also, if the

objective values and the constraint violations are the

same, F (x) = F (x′) holds for any ρ. Therefore, if the
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following conditions are satisfied, there is no need to

determine the penalty coefficient.

f(x′) ≤ f(x) and ϕ(x′) ≤ ϕ(x) (22)

or f(x) ≤ f(x′) and ϕ(x) ≤ ϕ(x′)

Otherwise, there exist a solution with a better ob-

jective value and a worse violation value and a solu-

tion with a worse objective value and a better violation

value. The equivalent penalty coefficient value (EPC)

ρi is defined as the value that makes the extended ob-

jective values of xi and x′
i the same:

F (xi) = F (x′
i) (23)

f(xi) + ρiϕ(xi) = f(x′
i) + ρiϕ(x

′
i) (24)

ρi = −f(xi)− f(x′
i)

ϕ(xi)− ϕ(x′
i)

(25)

Let assume that f(xi) < f(x′
i) and ϕ(x′

i) < ϕ(xi).

When the penalty coefficient is ρi + △, the following

equation is satisfied:

F (xi)− F (x′
i) (26)

= (f(xi) + (ρi +△)ϕ(xi))− (f(x′
i) + (ρi +△)ϕ(x′

i))

= △(ϕ(xi)− ϕ(x′
i))

If the penalty coefficient is larger than ρi, or △ is pos-

itive, F (x′
i) < F (xi) is satisfied and x′

i is the better

solution. On the contrary, if the penalty coefficient is

smaller than ρi, or △ is negative, F (xi) < F (x′
i) is

satisfied and xi is the better solution.

Let consider the list of ρi sorted in ascending order,

H = {ρk | ρk < ρk+1, k = 1, 2, · · · }. Because the solu-

tions that satisfy Eq.(22) are excluded, |H| ≤ N , where

|H| is the number of elements inH andN is the number

of solutions, or agents in PSO. In order to control the

penalty coefficient simply and adaptively, an algorithm

parameter Rcp (Rcp ≥ 0), which is a constraint priority

rate and specifies the pressure to move the population

into the feasible region, is introduced. The coefficient ρ

is decided as the Rcp|H|-th element inH using linear in-

terpolation. Note that ρ is commonly used to calculate

the extended objective function values F (·) for all solu-
tions according to Eq.(2) and the values are used as the

objective values f(·) in Eqs.(13)–(15). For example, in

case of Rcp = 0.9 and |H| = 10, Rcp|H| = 9 and ρ = ρ9.

In case of Rcp = 0.15 and |H| = 10, Rcp|H| = 1.5, but

ρ1.5 is not defined and can be obtained from ρ1 and ρ2
using the linear interpolation as follows:

ρ =


Rcp|H|ρ1, if Rcp|H| < 1

ρ|H|Rcp, if Rcp > 1

ρ⌊Rcp|H|⌋ +△Rcp△ρ, otherwise
(27)

△Rcp = Rcp|H| − ⌊Rcp|H|⌋ (28)

△ρ = ρ⌈Rcp|H|⌉ − ρ⌊Rcp|H|⌋ (29)

where ⌊·⌋ is rounding down to the nearest integer and

⌈·⌉ is rounding up to the nearest integer. The first equa-

tion in Eq.(27) is the linear interpolation between 0 and

ρ1. For example, in case of Rcp|H| = 0.5, ρ = 0.5ρ1.

When Rcp = 0, only the objective value will be op-

timized because ρ = 0. In the second equation when

Rcp > 1, the constraint violation has always higher pri-

ority than the objective value because ρ > ρ|H|. Setting

Rcp > 1 has similar effect of ρ = ∞ in the ordinary

penalty function method. It is thought that a feasible

solution can be found by changing Rcp to over 1 theoret-

ically as ρ → ∞. In the third equation, △Rcp is the dec-

imal part of Rcp|H|. △ρ is the difference between ρk+1

and ρk where k is the integer part of Rcp|H| if the deci-
mal part is not zero. If the decimal part is zero, △ρ=0.

The value of ρ is obtained by the linear interpolation of

ρk and ρk+1. For example, in the case of Rcp|H| = 1.5,

△Rcp=0.5, △ρ=ρ2 − ρ1 and ρ = ρ1 + 0.5(ρ2 − ρ1).

In order to avoid a sudden change in penalty coef-
ficient value, the penalty coefficient value of generation

t, ρ(t), is determined using the following exponential

moving average:

ρ(t) =

{
(1− λ)ρ(t− 1) + λρ, if t > 1

ρ, if t = 1
(30)

At time t, ρ is calculated by Eq.(27) and then ρ(t) is

obtained and used as the penalty coefficient. The rec-

ommended value of λ is [0.5,0.8] based on some prelim-

inary experiments.

4.2 Adaptive Control of the Constraint Priority Rate

The EPC method can adaptively control the penalty

coefficient using the fixed value of Rcp = 0.9 in prob-

lems without equality constraints. However, it is diffi-

cult to solve some problems with equality constraints.

Therefore, an adaptive control of Rcp is introduced as

follows:

Rcp =

{
Rmin

cp , if Rf = 0

Rmin
cp + (1−Rmin

cp )(1−Rf ), otherwise
(31)

Rf =
|{x∗

i | ϕ(x∗
i ) = 0}|

N
(32)

where Rmin
cp (0 ≤ Rmin

cp < 1) is a parameter which spec-

ifies the minimum value of Rcp and Rf is the feasible

rate of x∗
i (best visited position found so far) in all best

visited positions in PSO. If Rf = 0, that is, the popula-

tion is far from the feasible region, Rcp = Rmin
cp so that

the population gradually approaches the feasible region

with balancing the optimization of the objective func-

tion and the constraint. Otherwise, the value of Rcp is

in [Rmin
cp , 1] according to Rf . If Rf > 0 and Rf is very

small, that is, a few feasible solutions are found, Rcp is
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set to nearly 1 in order to push the population towards

the feasible region and Rf will be increased. If Rf is 1,
that is, the population is inside of the feasible region,

Rcp is set to Rmin
cp in order to search solutions in wide

area including the boundary of the feasible region and

Rf will be decreased. The recommended value of Rmin
cp

is 0.9 which is determined based on some preliminary

experiments.

4.3 Mutation and Repair

In this study, a mutation operation similar to rand/1

mutation of DE is utilized as follows:

x′
i = x∗

r1 + F (x∗
r2 − x∗

r3) (33)

where r1, r2 and r3 are random numbers in {1, 2, · · · , N}
excluding i and are different from each other. N is the

number of agents and F is a scaling factor. A new po-

sition is created using personal best positions. It is ex-

pected that the mutation will help to move in a narrow

feasible region. The mutation is applied with probabil-

ity Pm = 0.25 based on some preliminary experiments.

When a new position is out of the search space, the

position is repaired to be inside of the search space. The

repaired position is the middle of the violated bounds

and the corresponding variables of the current position

as follows [34]:

xrepaired
ij =


1
2 (lj + xt

ij), xt+1
ij < lj

1
2 (uj + xt

ij), x
t+1
ij > uj

xt+1
ij , otherwise

(34)

Also, the velocity is changed so that the bounds are not

violated again as follows:

vrepairedij =

{
− 1

2v
t+1
ij , xt+1

ij < lj or xt+1
ij > uj

vt+1
ij , otherwise

(35)

4.4 The algorithm of the proposed method

The algorithm of the proposed method PSOEPC (PSO

with EPC) is as follows:

0. The number of agents N , PSO parameters w, c1,

and c2, PSO topology, the mutation parameters Pm

and F , and EPC parameters p, λ, and Rmin
cp are

specified.

1. Initializing agents: Initial agent i with a position xi

and a velocity vi is created for all i ∈ {1, 2, · · · , N}.
xi is randomly generated in the search space S where

each element xij is a uniform random number in

[lj , uj ]. vi is initialized randomly where vij is a ran-

dom number in [−Vmaxj
, Vmaxj

] and Vmaxj
= 1

2 (uj−
lj), which is half the range of j-th variable, in this

study.

2. Evaluating agents: All agents i are evaluated and

f(xi) and ϕ(xi) are obtained. The personal best

position is set to the initial position, namely x∗
i=xi.

3. Obtaining the feasible rate: The feasible rate of per-

sonal best positions is obtained according to Eq.(32).

4. Termination condition: If the number of function

evaluations exceeds the maximum number of func-

tion evaluations FEmax, the algorithm is terminated.

5. Updating agents: Mainly, the agents are updated by

the movement. The new velocity of each agent i are

obtained according to Eq.(16). The each element of

the new velocity is truncated in [−Vmaxj , Vmaxj ].

The new position is obtained according to Eq.(17).

Otherwise, with probability Pm, the agents are up-

dated by the mutation according to Eq. (33). If the

position is out of the search space, the position and

the velocity is repaired according to Eqs. (34) and

(35).

6. EPC method: ρi, Rcp, ρ and ρ(t) are determined
according to Eqs. (25), (31), (27) using the feasible

rate and Eq.(30).

7. Updating the personal best positions: The values of

the extended objective function for the new posi-

tions x′
i and the best visited positions x∗

i are ob-

tained according to Eq. (2) using ρ(t) instead of ρ.

If the extended objective value of the new position

F (x′
i) is better than that of the personal best posi-

tion F (x∗
i ), the personal best position is replaced

with the new position. If the extended objective

value of the new position is better than that of the

best position in all agents, the best position is set

to the new position.

8. Go back to Step2.

5 Solving Nonlinear Optimization Problems

In this paper, thirteen benchmark problems that are

mentioned in some studies [3, 15, 16] are optimized by

the proposed method PSOEPC.

5.1 Test problems and the experimental conditions

In the thirteen benchmark problems, problems g03, g05,

g11 and g13 contain equality constraints. In problems

with equality constraints, the equality constraints are

relaxed and converted to inequality constraints accord-

ing to Eq. (36), which is adopted in many methods:

|hj(x)| ≤ 10−4 (36)

Problem g12 has disjointed feasible regions. Table 1

shows the outline of the thirteen problems [16,35]. The

table contains the number of variables D, the form of
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the objective function, the number of linear inequality

constraints (LI), nonlinear inequality constraints (NI),
linear equality constraints (LE), nonlinear equality con-

straints (NE) and the number of constraints active at

the optimal solution.

Table 1 Summary of test problems

f D Form of f LI NI LE NE active
g01 13 quadratic 9 0 0 0 6
g02 20 nonlinear 1 1 0 0 1
g03 10 polynomial 0 0 0 1 1
g04 5 quadratic 0 6 0 0 2
g05 4 cubic 2 0 0 3 3
g06 2 cubic 0 2 0 0 2
g07 10 quadratic 3 5 0 0 6
g08 2 nonlinear 0 2 0 0 0
g09 7 polynomial 0 4 0 0 2
g10 8 linear 3 3 0 0 6
g11 2 quadratic 0 0 0 1 1
g12 3 quadratic 0 93 0 0 0
g13 5 nonlinear 0 0 1 2 3

Settings for PSO are as follows: The constriction

model with w=0.729 and c1=c2=1.49445 is adopted.

The number of agents N = 50 and the maximum num-

ber of function evaluations FEmax = 200, 000. Set-

tings for the mutation are as follows: The mutation rate

Pm=0.25 and scaling factor F is randomly generated

in [0.4,0.9]. Settings for EPC method are as follows:

Every constraint violation is defined as a simple sum

of constraints, or p = 1 in Eq. (5). The value of λ in

Eq.(30) is 0.8. The Rcp is controlled using Eq. (31) with

Rmin
cp = 0.9.

In this paper, 30 independent runs are performed.

5.2 Experimental results

In the experiments, several methods are examined: PSO

with the feasibility rule (PSO), PSOEPC without the

mutation (PSOEPC), PSO with the mutation (PSOm)

and PSOEPC with the mutation (PSOEPCm). Two

representative topologies, or fully-connected topology

(gbest) and the ring topology (ring), are also examined.

In the ring topology, the neighborhood size is 3, that

is, i-th agent is connected to (i − 1)-th and (i + 1)-th

agent.

Table 2 shows results of the best, median, mean,

worst values and the standard deviation for the above

methods. The success rate, which is the ratio of finding

a feasible solution in 30 runs, is shown in parentheses.

All methods found optimal solutions in all 30 runs

for g04 and g12. As for g01, PSO, PSOm, PSOEPC

and PSOEPCm with the ring topology found the op-

timal solutions in all 30 runs. As for g02, PSOEPCm

(ring) attained the best results. As for g03, g07, g10

and g13, PSOEPCm (ring) attained the best results.

As for g05, PSOEPCm (gbest) and PSOEPCm (ring)

attained the best results and found the optimal solu-

tions in all runs. As for g06 and g11, PSOEPC (ring),

PSOm with both topologies and PSOEPCm with both

topologies found the optimal solutions in all runs. As

for g08, all methods except for PSOEPC (gbest) found

the optimal solutions in all runs. As for g09, PSOm

with both topologies and PSOEPCm with both topolo-

gies found the optimal solutions in all runs. Therefore,

it is thought that PSOEPCm (ring) is the best method

which find near optimal solutions in all runs for all prob-

lems except for g02.

Wilcoxon signed rank test is performed and the re-

sult for each function is shown in Table 3. Symbols

‘+’, ‘−’ and ‘=’ are shown when a method is signif-
icantly better than PSOEPCm (ring), is significantly

worse than PSOEPCm (ring), and is not significantly

different from PSOEPCm (ring), respectively. Symbols

‘++’ and ‘−−’ are shown when the significance level

is 1% and ‘+’ and ‘−’ are shown when the significance

level is 5%.

It is thought that EPC method is effective because

PSOEPCm (ring) is significantly better than PSOm

(ring) in 5 functions. It is thought that the mutation is

effective because PSOEPCm (ring) is significantly bet-

ter than PSOEPC (ring) in 9 functions. It is thought

that the ring topology is effective because PSOEPCm

(ring) is significantly better than PSOEPCm (gbest) in

5 functions. Thus, it is thought that the EPC method,

the mutation and the ring topology is effective to con-

strained optimization.

5.3 Comparison with Other Methods

In order to show the performance of PSOEPC, PSOEPCm

(ring) is compared with other methods including PSOm

(ring) with static penalty of ρ=100 and 10,000, PSOm

(ring) with the adaptive penalty method in [25] and

DEEPC [5]. Also, PSOEPCm (ring) with Pm=0.25 is

compared with PSOEPCm (ring) with Pm=0.5 and

0.75 to investigate the effect of the mutation.

Table 4 shows the results of the mean value and the

standard deviation for the above methods. The success

rate is shown in parentheses. As for the static penalty

of ρ=100, it was difficult to find feasible solutions in

g03 and g10. Also, near optimal solutions cannot be

found in g04, g06 and g13. As for the static penalty

of ρ=10,000, it was difficult to find feasible solutions

in g10. Also, near optimal solutions cannot be found
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Table 2 Comparison of statistical results among PSO with the gbest and ring topologies using the feasibility rule, PSOEPC
(PSOEPC), PSO with the mutation (PSOm), and PSOEPC with the mutation.

Statistics PSO (gbest) PSO (ring) PSOEPC (gbest) PSOEPC (ring) PSOm (gbest) PSOm (ring) PSOEPCm (gbest) PSOEPCm (ring)

best -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000

median -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000 -15.0000000
g01

mean -14.1640625 -15.0000000 -14.3656250 -15.0000000 -14.4604167 -15.0000000 -14.2421875 -15.0000000
-15.000

worst -12.4531250 -15.0000000 -12.6562500 -15.0000000 -12.4531250 -15.0000000 -12.4531250 -15.0000000

σ 1.07e+00 (100) 0.00e+00 (100) 8.74e-01 (100) 0.00e+00 (100) 9.87e-01 (100) 0.00e+00 (100) 1.08e+00 (100) 0.00e+00 (100)

best -0.8036162 -0.8034665 -0.7631314 -0.8034396 -0.8036190 -0.8036189 -0.8036190 -0.8036189

median -0.6573037 -0.7951584 -0.6599638 -0.7933039 -0.7700933 -0.8036172 -0.7744902 -0.8036178
g02

mean -0.6411993 -0.7889189 -0.6516125 -0.7833147 -0.7552821 -0.7985702 -0.7560894 -0.8017130
-0.803619

worst -0.3954511 -0.7369670 -0.3954511 -0.7202204 -0.6153742 -0.7808419 -0.5576084 -0.7926078

σ 9.33e-02 (100) 1.81e-02 (100) 8.80e-02 (100) 2.44e-02 (100) 5.11e-02 (100) 6.43e-03 (100) 5.54e-02 (100) 3.84e-03 (100)

best -1.0004948 -0.9997957 -1.0004935 -1.0004480 -1.0005001 -1.0005001 -1.0005000 -1.0005001

median -1.0004870 -0.9988941 -1.0004643 -0.9945826 -1.0004998 -1.0004979 -1.0004937 -1.0004999
g03

mean -1.0004847 -0.9986018 -1.0004430 -0.9398613 -1.0004958 -1.0003296 -0.9803877 -1.0004987
-1.0005

worst -1.0004598 -0.9967287 -1.0002049 -0.3078240 -1.0004600 -0.9978407 -0.4066266 -1.0004834

σ 9.08e-06 (100) 8.59e-04 (100) 6.26e-05 (100) 1.36e-01 (100) 1.00e-05 (100) 5.85e-04 (100) 1.07e-01 (100) 3.26e-06 (100)

best -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718

median -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718
g04

mean -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718
-30665.5387

worst -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718

σ 0.00e+00 (100) 8.17e-10 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

best 5126.4996291 5126.5073298 5126.5240655 5126.5056529 5126.4967140 5126.4967140 5126.4967140 5126.4967140

median 5151.8051173 5151.7224741 5133.1918329 5128.0081289 5126.4967140 5126.4967140 5126.4967140 5126.4967140
g05

mean 5179.6315473 5194.1348257 5136.9595236 5131.3478866 5126.8461961 5126.6143143 5126.4967140 5126.4967140
5126.4967

worst 5359.5313214 5470.5300974 5186.2574538 5162.1289704 5132.9810511 5129.6092865 5126.4967140 5126.4967140

σ 6.44e+01 (93) 8.52e+01 (87) 1.30e+01 (100) 8.00e+00 (63) 1.24e+00 (100) 5.61e-01 (100) 6.01e-09 (100) 2.83e-11 (100)

best -6961.8138756 -6961.8138756 -6961.4512932 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756

median -6961.8138756 -6961.8138756 -6959.9112774 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756
g06

mean -6961.8138756 -6961.8138756 -6959.4269765 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756
-6961.8139

worst -6961.8138755 -6961.8138753 -6954.5538565 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756

σ 1.83e-08 (100) 5.52e-08 (100) 1.56e+00 (100) 4.24e-10 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

best 24.3532828 24.4324760 24.3597940 24.3739501 24.3062093 24.3062092 24.3062091 24.3062091

median 24.9934956 24.6358790 24.9871796 24.6135761 24.3063520 24.3062606 24.3062261 24.3062149
g07

mean 25.0677962 24.6823089 25.2239374 24.6300412 24.3069002 24.3063747 24.3062972 24.3062433
24.3062

worst 26.5638488 25.2118705 27.5565406 24.9675733 24.3117616 24.3070163 24.3067668 24.3065045

σ 5.17e-01 (100) 2.04e-01 (100) 7.62e-01 (100) 1.57e-01 (100) 1.35e-03 (100) 2.10e-04 (100) 1.51e-04 (100) 6.57e-05 (100)

best -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250

median -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250
g08

mean -0.0958250 -0.0958250 -0.0958249 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250
-0.095825

worst -0.0958250 -0.0958250 -0.0958243 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250

σ 0.00e+00 (100) 0.00e+00 (100) 2.18e-07 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

best 680.6355188 680.6341766 680.6327793 680.6423843 680.6300574 680.6300574 680.6300574 680.6300574

median 680.6557118 680.6504461 680.6475737 680.6575376 680.6300574 680.6300574 680.6300574 680.6300574
g09

mean 680.6599146 680.6533174 680.6511996 680.6661846 680.6300574 680.6300574 680.6300574 680.6300574
680.630057

worst 680.7163843 680.7048074 680.7117605 680.7170877 680.6300574 680.6300574 680.6300574 680.6300574

σ 1.73e-02 (100) 1.48e-02 (100) 1.82e-02 (100) 2.05e-02 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

best 7083.8886187 7073.9011643 7051.9120139 7079.6718113 7049.2480207 7049.2480216 7049.2480209 7049.2480207

median 7269.2943399 7160.5622036 7479.6219922 7183.2302366 7049.2480432 7049.2480373 7049.2480230 7049.2480224
g10

mean 7310.4078886 7186.8170074 7814.5071983 7218.4466184 7049.2481105 7049.2480771 7049.2480330 7049.2480232
7049.248

worst 7625.6551359 7593.2805862 13539.9905406 7473.9271745 7049.2484709 7049.2483591 7049.2481216 7049.2480327

σ 1.30e+02 (100) 1.12e+02 (100) 1.14e+03 (100) 1.09e+02 (100) 1.35e-04 (100) 8.82e-05 (100) 2.48e-05 (100) 2.90e-06 (100)

best 0.7499000 0.7499000 0.7499000 0.7499000 0.7499000 0.7499000 0.7499000 0.7499000

median 0.7499000 0.7499001 0.7499006 0.7499000 0.7499000 0.7499000 0.7499000 0.7499000
g11

mean 0.7499001 0.7499003 0.7499019 0.7499000 0.7499000 0.7499000 0.7499000 0.7499000
0.749900

worst 0.7499010 0.7499032 0.7499152 0.7499000 0.7499000 0.7499000 0.7499000 0.7499000

σ 1.81e-07 (100) 7.16e-07 (100) 3.63e-06 (100) 4.12e-09 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

best -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000

median -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
g12

mean -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
-1.000

worst -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000

σ 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

best 0.0544964 0.0557530 0.0539452 0.0543969 0.0539415 0.0539415 0.0539415 0.0539415

median 0.4405095 0.4604644 0.0548208 0.1026147 0.4388026 0.4388026 0.0539415 0.0539415
g13

mean 0.3511268 0.4187795 0.2212339 0.1665166 0.3365596 0.3538300 0.1052563 0.0539415
0.0539415

worst 1.0000000 0.9956896 0.4408550 0.5352735 0.7359228 0.5784183 0.4388026 0.0539415

σ 2.22e-01 (100) 1.96e-01 (100) 1.91e-01 (93) 1.31e-01 (90) 1.80e-01 (100) 1.57e-01 (100) 1.31e-01 (100) 2.79e-15 (100)

in g03 and g13. As for the adaptive penalty method,

feasible solutions can be found in all problems in all

runs. But near optimal solutions cannot be found in

g01, g03–g07, g10, and g13. Therefore, it is thought

that PSOEPCm (ring) is better than the static penalty

methods and the adaptive penalty method.

As for PSOEPCm (ring) with Pm=0.25, 0.5 and

0.75, same near optimal solutions were found in 8 prob-

lems of g01, g04–g06, g08, g09, g11 and g12. PSOEPCm

(ring) with Pm=0.25 attained the best results in g02

and g13. PSOEPCm (ring) with Pm=0.5 attained the

best result in g10. PSOEPCm (ring) with Pm=0.75

attained the best results in g03, g07 and g10. The dif-

ference of mean values are very small except for g02

and g13. Therefore, from the viewpoint of mean val-

ues in Table 4 it is thought that PSOEPCm (ring)

with Pm=0.25 is better than PSOEPCm (ring) with

Pm=0.5 and 0.75, and the difference is not large.

As for DEEPC, DEEPC found better mean values

than PSOEPCm (ring) with Pm=0.25 in g02, g03, g07

and g10, but the difference is very small. it is thought

that from the viewpoint of mean values in Table 4

DEEPC is a little better than PSOEPCm (ring) with

Pm=0.25. PSOEPCm (ring) with Pm=0.25 is a very

good PSO-based method.
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Table 3 Results of Wilcoxon signed rank test against
PSOEPCm with the ring topology.

PSO PSO PSOEPC PSOEPC PSOm PSOm PSOEPCm
gbest ring gbest ring gbest ring gbest

g01 −− = −− = − = −−
g02 −− −− −− −− −− −− −−
g03 −− −− −− −− = −− −−
g04 = −− = = = = =
g05 −− −− −− −− = = −−
g06 −− −− −− −− = = =
g07 −− −− −− −− −− −− =
g08 = = −− = = = =
g09 −− −− −− −− = = =
g10 −− −− −− −− −− −− =
g11 −− −− −− −− = = =
g12 = = = = = = =
g13 −− −− −− −− −− −− −−
+ 0 0 0 0 0 0 0
= 3 3 2 4 8 8 8
− 10 10 11 9 5 5 5

Wilcoxon signed rank test for PSOEPCm against

DEEPC is performed and the result for each function is

shown in Table 5. Symbols ‘+’, ‘−’ and ‘=’ are shown

when a method is significantly better than DEEPC,

is significantly worse than DEEPC, and is not signif-

icantly different from DEEPC, respectively. Symbols

‘++’ and ‘−−’ are same in Table 3.

The results are slightly different from Table 4 be-

cause very small differences of 10−10 or less are taken

into account. According to the number of ’+’ and ’-’

signs, PSOEPCm with Pm=0.75 is the best method

followed by DEEPC, PSOEPCm with Pm=0.5 and

PSOEPCmwith Pm=0.25. Therefore, it is thought that

PSOEPCm is equivalent to or better than DEEPC by

selecting proper Pm.

PSOEPCmwith Pm=0.75 attained significantly bet-

ter results than DEEPC in 2 functions g03 which has
a unimodal objective function and g10 which has a lin-

ear objective function, and attained significantly worse

result in g02 which has a highly multimodal objective

function. It is thought that PSOEPCm is more suit-

able to solve unimodal objective functions as PSO than

highly multimodal objective functions.

5.4 Discussion

In order to investigate the scalability of PSOEPCm

(ring) for the number of dimensions D, the following

constrained optimization problem with an equality con-

straint is solved with changing D.

minimize f(x) =
∑D

j=1 x
2
j (37)

subject to h1(x) =
∑D

j=1 x
2
j − 1 = 0 (38)

−100 ≤ xj ≤ 100, j = 1, 2, · · · , D (39)

where the equality constraint is relaxed according to

Eq.(36). The optimal value is 1. The problem is solved

by PSOEPCm (ring) with the same settings as the

above experiments such as N=50, Pm=0.25 and 30

runs except for FEmax = 10000D. Table 6 shows the

results of the mean value and the standard deviation in

case of D=50, 100, 200, 300, 400 and 500.

PSOEPCm (ring) found the near optimal solutions

stably in all runs and all D, where the best values are

less then 1 due to the relaxation. It is thought that

PSOEPCm (ring) is robust to D in this problem. Since

the scalability for D depends on problems to be solved

and also FEmax, it is difficult to show the scalability

in general. It is thought that enhanced PSOs for large

scale problems [36] are suitable to solve problems with

the large number of dimensions.

6 Conclusions

In the penalty function method, feasible solutions can

be found by increasing the penalty coefficient towards

infinity theoretically, although it is difficult to do so

computationally. In the EPC method, the penalty co-

efficient is controlled adaptively using the equivalent

penalty coefficient (EPC) values. The constraint prior-

ity rate is defined to select a proper EPC value from

EPC values and the adaptive control of the constraint

priority rate using the feasible rate of the population is

also defined.

In this study, the EPC method is introduced to

PSO, the mutation and repair operations for PSO are

defined, and PSOEPC is proposed. The experiments

for solving well known constrained problems were per-

formed and it was shown that PSOEPC with the ring

topology and the mutation could search for high quality

solutions in all problems compare with standard meth-

ods. Also, it was shown that the EPC method attained

better results than other constraint-handling methods

including the static penalty and the adaptive penalty

methods.

In the future, we will investigate the scalability of

PSOEPC and apply PSOEPC to various real world

problems that have large numbers of decision variables

and constraints. Also, we will introduce the idea of EPC

method into other POAs.
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Table 4 Comparison of results among PSOm (ring) with the static penalty methods, PSOm (ring) with the adaptive penalty
method, PSOEPCm (ring) with Pm=0.25, 0.5 and 0.75, and DEEPC.

Statistics static penalty static penalty adaptive penalty PSOEPCm PSOEPCm PSOEPCm DEEPC

ρ=100 ρ=10,000 Pm=0.25 Pm=0.5 Pm=0.75

g01 mean -15.0000000 -15.0000000 -14.8218545 -15.0000000 -15.0000000 -15.0000000 -15.0000000

-15.000 σ 0.00e+00 (100) 0.00e+00 (100) 1.86e-02 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g02 mean -0.7961152 -0.7964215 -0.7976481 -0.8017130 -0.7861999 -0.7543802 -0.8022674

-0.803619 σ 7.69e-03 (100) 7.80e-03 (100) 8.61e-03 (100) 3.84e-03 (100) 1.75e-02 (100) 3.79e-02 (100) 4.18e-03 (100)

g03 mean -0.0216546 -0.3154008 -0.2839239 -1.0004987 -1.0004999 -1.0005001 -1.0005001

-1.0005 σ 3.73e-02 (3) 1.53e-01 (100) 1.23e-01 (100) 3.26e-06 (100) 4.62e-07 (100) 7.86e-11 (100) 2.29e-11 (100)

g04 mean -29660.4568327 -30665.5386718 -30611.8723547 -30665.5386718 -30665.5386718 -30665.5386718 -30665.5386718

-30665.5387 σ 3.34e+02 (100) 0.00e+00 (100) 1.36e+01 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g05 mean 5126.4967140 5126.4967140 5187.1995051 5126.4967140 5126.4967140 5126.4967140 5126.4967140

5126.4967 σ 0.00e+00 (100) 1.75e-09 (100) 7.74e+01 (100) 2.83e-11 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g06 mean -6044.8226251 -6961.8138756 -6959.1019138 -6961.8138756 -6961.8138756 -6961.8138756 -6961.8138756

-6961.8139 σ 6.43e+02 (100) 0.00e+00 (100) 1.54e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g07 mean 24.3063207 24.3065779 24.4674655 24.3062433 24.3062174 24.3062092 24.3062091

24.3062 σ 2.51e-04 (100) 4.56e-04 (100) 2.79e-02 (100) 6.57e-05 (100) 4.43e-05 (100) 3.51e-07 (100) 1.78e-09 (100)

g08 mean -0.0958174 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250 -0.0958250

-0.095825 σ 1.63e-05 (100) 0.00e+00 (100) 7.24e-08 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g09 mean 680.6300574 680.6300574 680.6300937 680.6300574 680.6300574 680.6300574 680.6300574

680.630057 σ 0.00e+00 (100) 0.00e+00 (100) 3.10e-05 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g10 mean 8705.0397468 9592.1262915 8125.9859481 7049.2480232 7049.2480205 7049.2480205 7049.2480205

7049.248 σ 6.56e+03 (0) 5.69e+03 (0) 1.62e+02 (100) 2.90e-06 (100) 3.88e-12 (100) 0.00e+00 (100) 1.77e-09 (100)

g11 mean 0.7499000 0.7499000 0.7499084 0.7499000 0.7499000 0.7499000 0.7499000

0.749900 σ 0.00e+00 (100) 0.00e+00 (100) 6.98e-06 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g12 mean -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000

-1.000 σ 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100) 0.00e+00 (100)

g13 mean 0.6428133 0.7429714 0.9209897 0.0539415 0.0667702 0.0795989 0.0539415

0.0539415 σ 2.32e-01 (100) 1.68e-01 (100) 1.32e-01 (100) 2.79e-15 (100) 6.91e-02 (100) 9.60e-02 (100) 0.00e+00 (100)

Table 5 Results of Wilcoxon signed rank test for PSOEPCm
against DEEPC.

PSOEPCm PSOEPCm PSOEPCm
Pm=0.25 Pm=0.5 Pm=0.75

g01 = = =
g02 = −− −−
g03 −− − ++
g04 = = =
g05 −− = =
g06 = = =
g07 −− −− =
g08 = = =
g09 = = =
g10 −− ++ ++
g11 = = =
g12 = = =
g13 −− = =
+ 0 1 2
= 8 9 10
− 5 3 1

Table 6 Scalability for the number of dimensions D

D mean σ
50 0.9999134 1.30e-05
100 0.9999056 4.19e-06
200 0.9999023 1.96e-06
300 0.9999010 1.23e-06
400 0.9999012 2.09e-06
500 0.9999003 5.53e-07
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