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Abstract: The penalty function method has been widely used to solve constrained optimization problems. In the method,
an extended objective function, which is the sum of the objective value and the constraint violation weighted by the penalty
coefficient, is optimized. However, it is difficult to control the coefficient properly because the proper control depends
on each problem. Recently, the equivalent penalty coefficient (EPC) method, which is a new adaptive penalty method for
population-based optimization algorithms (POAs), has been proposed. The EPC method can be applied to POAs where
a new solution is compared with the old solution. The EPC value, which makes the two extended objective values of
the solutions the same, is used to control the coefficient. In this study, we propose to apply the EPC method to particle
swarm optimization (PSO) where a new solution is compared with the best solution found so far. In order to improve the
performance of constrained optimization, a mutation operation is also proposed. The proposed method is examined using
two topologies of PSO. The advantage of the proposed method is shown by solving well-known constrained optimization
problems and comparing the results with those obtained by PSO with a standard constraint-handling technique.

Keywords: constrained optimization, particle swarm optimization, equivalent penalty coefficient method, population-
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1. INTRODUCTION
Constrained optimization problems, especially non-

linear constrained optimization problems, where objec-
tive functions are minimized under given constraints,
are very important and frequently appear in the real
world. There exist many studies on solving constrained
optimization problems using population-based optimiza-
tion algorithms (POAs) such as evolutionary algorithms
(EAs)[1-3] and particle swarm optimization (PSO)[4].
POAs basically lack a mechanism to incorporate the con-
straints of a given problem in the fitness value of individ-
uals. Thus, many studies have been dedicated to handle
the constraints in POAs.

The penalty function method has been widely used
for solving constrained optimization problems. In the
method, an extended objective function is optimized
where the function is defined by the sum of the objec-
tive value and the constraint violation weighted by the
penalty coefficient. Feasible solutions can be found by in-
creasing the penalty coefficient into infinity theoretically.
However, it is difficult to control the coefficient properly
because proper control of the coefficient varies in each
problem and the search process. Recently, the equiva-
lent penalty coefficient (EPC) method was proposed for
adaptive control of the penalty coefficient in POAs [5].
An EPC value is defined in POAs where a new solution
is compared with the old solution. For example, a child
individual is compared with the parent individual in dif-
ferential evolution (DE) and a new position after moving
is compared with the personal best position found so far
in PSO. The EPC value is the penalty coefficient value
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that makes the two extended objective values of the old
solution and the new solution the same when the objec-
tive value and the constraint violation are in a trade-off
relationship. In POAs, there are plural EPCs in a popula-
tion in general. Search that gives priority to the objective
value and the constraint violation is realized by selecting
a small EPC and a large EPC, respectively. The adap-
tive control of the penalty coefficient can be realized by
selecting an appropriate EPC value.

In this study, we propose to apply the EPC method to
PSO, whereas in [5] the EPC method was applied to DE.
In order to improve the performance of constrained opti-
mization, a mutation operation is also proposed. The pro-
posed method is examined using two topologies of PSO
such as the fully-connected topology and the ring topol-
ogy. The advantage of the proposed method is shown by
solving well-known constrained optimization problems
and comparing the results with those obtained by PSO
with a standard constraint-handling technique.

In Section 2, constrained optimization problems are
defined and constrained optimization methods including
the penalty function method are briefly reviewed. PSO
is explained in Section 3. The proposed method is de-
scribed in Section 4. In Section 5, experimental results
on constrained problems are shown and the results of the
proposed method are compared with those of a standard
method. Finally, conclusions are described in Section 6.

2. RELATED WORKS

2.1. Constrained Optimization Problems
The general constrained optimization problem with in-

equality, equality, upper bound and lower bound con-
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straints is defined as follows:

minimize f(x),
subject to gj(x) ≤ 0, j = 1, . . . , q,

hj(x) = 0, j = q + 1, . . . ,m,
li ≤ xi ≤ ui, i = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is a D dimensional vec-
tor of decision variables, f(x) is an objective function,
gj(x) ≤ 0 are q inequality constraints and hj(x) = 0 are
m−q equality constraints. The functions f, gj and hj are
linear or nonlinear real-valued functions. The values ui
and li are the upper and lower bounds of xi, respectively.
The upper and lower bounds define the search space S.
All constraints define the feasible region F . Feasible so-
lutions exist in F ⊆ S .

2.2. Constrained Optimization Methods
POAs for constrained optimization can be classified

into several categories according to the way the con-
straints are treated as follows [3]:

(1) Constraints are only used to see whether a search
point is feasible or not. Approaches in this cate-
gory are usually called death penalty methods. In
this category, the searching process begins with one
or more feasible points and continues to search for
new points within the feasible region. When a new
search point is generated and the point is not feasi-
ble, the point is repaired or discarded. When the fea-
sible region is very small, generating initial feasible
points is difficult and computationally demanding.

(2) The constraint violation, which is the sum of the
violation of all constraint functions, is combined
with the objective function. The penalty function
method is in this category [6-9]. In the penalty func-
tion method, an extended objective function is de-
fined by adding the constraint violation to the objec-
tive function as a penalty. The optimization of the
objective function and the constraint violation is re-
alized by the optimization of the extended objective
function. The main difficulty of the penalty func-
tion method is the selection of an appropriate value
for the penalty coefficient that adjusts the strength
of the penalty. If the penalty coefficient is large,
feasible solutions can be obtained, but the optimiza-
tion of the objective function will be insufficient. On
the contrary, if the penalty coefficient is small, high
quality (but infeasible) solutions can be obtained as
it is difficult to decrease the constraint violation. In
order to solve the difficulty, some methods, where
the penalty coefficient is adaptively controlled, are
proposed [5, 10, 11].

(3) The constraint violation and the objective func-
tion are used separately. In this category, both the
constraint violation and the objective function are
optimized by a lexicographic order in which the
constraint violation precedes the objective function.
The rule of comparison where the constraint viola-
tion precedes the objective function is called feasi-
bility rule and is a standard constraint-handling tech-

nique. Deb [12] proposed a method that adopts the
extended objective function, which realizes the lex-
icographic ordering. Takahama and Sakai proposed
the α constrained method [13] and the ε constrained
method [14] that adopt a lexicographic ordering with
relaxation of the constraints. Runarsson and Yao
[15] proposed the stochastic ranking method that
adopts the stochastic lexicographic order, which ig-
nores the constraint violation with some probability.
Mezura-Montes and Coello [16] proposed a com-
parison mechanism that is equivalent to the lexico-
graphic ordering. Venkatraman and Yen [17] pro-
posed a two-step optimization method, which first
optimizes the constraint violation and then the ob-
jective function. These methods were successfully
applied to various problems.

(4) The constraints and the objective function are op-
timized by multiobjective optimization methods. In
this category, the constrained optimization problems
are solved as the multiobjective optimization prob-
lems in which the objective function and the con-
straint functions are objectives to be optimized [18-
23]. But in many cases, solving multiobjective opti-
mization problems is a more difficult and expensive
task than solving single objective optimization prob-
lems.

(5) Hybridization methods. In this category, con-
strained problems are solved by combining some of
the above mentioned methods. Mallipeddi and Sug-
anthan [24] proposed a hybridization of the methods
in the categories (2), (3) and (4).

In this study, the category (2) is paid attention to. The
EPC method is utilized for constrained optimization by
PSO.

2.3. Penalty Function Methods
In the constrained optimization, it is necessary to op-

timize the objective function and the constraint violation
simultaneously. In the penalty function method, the con-
strained optimization problem is converted to the follow-
ing unconstrained optimization problem by adding the
constraint violation ϕ(x) weighted by the penalty coef-
ficient to the objective function f(x) as a penalty.

F (x) = f(x) + ρϕ(x) (2)

where F (·) is the extended objective function and ρ is
the penalty coefficient (ρ > 0). By increasing the penalty
coefficient towards∞, the constraint violation converges
to 0, and an feasible solution can be obtained.

The constraint violation ϕ(x) satisfies the following:{
ϕ(x) = 0, if x ∈ F
ϕ(x) > 0, if x ̸∈ F (3)

Some types of constraint violations, which are adopted as
a penalty in penalty function methods, can be defined as
follows:

ϕ(x) = max{max
j
{0, gj(x)},max

j
|hj(x)|} (4)

ϕ(x) =
∑
j

(max{0, gj(x)})p +
∑
j

|hj(x)|p (5)
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where p is a positive number. In this study, Eq. (5) is
used with p = 1.

There are three types of the penalty approaches:
static penalty, dynamic penalty and adaptive penalty ap-
proaches. The value of the penalty coefficient is fixed
in the static penalty approach, and it is changed dynami-
cally according to the number of generations or iterations
in the dynamic penalty approach. One needs to select a
proper fixed value or proper changing schedule by trial
and error, because the proper value and the proper sched-
ule depend on the problem to be solved. In the adaptive
penalty approach, the coefficient is changed based on in-
formation obtained from the population of solutions. The
problem with the adaptive penalty approach is that some
parameters for adaptive control of the penalty coefficient
are introduced and proper parameter values still depend
on the problems to be solved. Some approaches without
the parameters are proposed. In [25], the normalization
of the objective function and the constraint functions is
proposed as follows:

f̃(x) =
f(x)− fmin

fmax − fmin
(6)

where fmin and fmax are the minimum value and the
maximum value of f in the population, respectively.

ṽ(x) =
1

m

m∑
j=1

vj(x)

vj,max
(7)

vj(x) =

{
max{0, gj(x)}, j = 1, · · · , q
|hj(x)|, j = q + 1, · · · ,m (8)

where vj,max is the maximum value of vj in the popula-
tion.

F (x) =


f̃(x), if x ∈ F
ṽ(x), if Rf = 0√
f̃(x)2 + ṽ(x)2 +A(x), otherwise

(9)

where Rf is the rate of feasible solutions in the popula-
tion and A(x) = (1−Rf )v(x) +Rf f̃(x).

In [26], balancing the objective value and the con-
straint violations is proposed as follows:

F (x) =

{
f(x), if x ∈ F
f̃(x) +

∑m
j=1 kjvj(x), otherwise (10)

f̃(x) =

{
f(x), if f(x) > f̄
f̄ , otherwise (11)

where f̄ is the average of f in the population.

kj = |f̄ |
v̄j∑m
l=1 v̄

2
l

(12)

where v̄j is the average of vj in the population.
The EPC method will be explained in Section 4.

3. PARTICLE SWARM OPTIMIZATION
An animal such as an ant, a fish, and a bird has lim-

ited memory and ability to perform simple actions. In
contrast, a group of animals such as an ant swarm, a fish

school, and a bird flock can take complex or intelligent
actions such as avoiding predators and seeking foods ef-
ficiently. Swarm intelligence is defined as the collective
actions of agents that act autonomously and communicate
each other. PSO [27, 28] is a swarm intelligence based
optimization method which is inspired by the movement
of a bird flock. PSO imitates the movement to solve op-
timization problems and is considered as a population-
based stochastic search method or POA.

Searching procedures by PSO can be described as fol-
lows: A group of agents minimizes the objective function
f . At any time t, each agent i knows its current posi-
tion xt

i and velocity vt
i. It also remembers its personal

best visited position until now x∗
i and the objective value

pbesti.

x∗
i = arg min

τ=0,1,···,t
f(xτ

i ) (13)

pbesti = f(x∗
i ) (14)

Two models, gbest model and lbest model have been pro-
posed [29, 30]. In the gbest model, every agent knows
the best visited position x∗

G in all agents and its objective
value gbest.

x∗
G = argmin

i
f(x∗

i ) (15)

gbest = f(x∗
G) (16)

In the lbest model, each agent knows the best visited po-
sition x∗

l in the neighbors and its objective value lbesti,
where the neighbors are defined by a topology such as
ring, mesh, star and tree topology.

x∗
l = arg min

k∈Ni

f(x∗
k) (17)

lbesti = f(x∗
l ) (18)

where Ni is the set of neighbor agents to i. The velocity
of the agent i at time t+ 1 is defined as follows:

vt+1
ij = wvtij + c1 rand1ij (x

∗
ij − xtij) (19)

+ c2 rand2ij (x
∗
lj − xtij)

where l = G in the gbest model, w is an inertia weight
and randkij is a uniform random number in [0, 1] which
is generated in each dimension. c1 is a cognitive pa-
rameter, c2 is a social parameter which represent the
weight of the movement to the personal best and the
group/neighbors best respectively. Usually, the maxi-
mum velocity V max

j is specified to avoid too large ve-
locity and |vij | ≤ V max

j is satisfied.
The position of the agent i at time t + 1 is given as

follows:

xt+1
i = xt

i + vt+1
i (20)

In linearly decreasing inertia weight (LDIW) method
[31], the inertia weight w is linearly decreasing with the
number of iterations as follows:

w = wmax − (wmax − wmin)
t

Tmax
(21)

where wmax and wmin are the maximum weight and the
minimum weight for w, respectively. Tmax is the max-
imum number of iterations. Recommended values are
wmax=0.9, wmin=0.4, c1=c2=2 and V max=uj .
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In constriction model [32], Eq.(19) is modified to guar-
antee the convergence of agents to a local optimum as
follows:

vt+1
ij = χ[vtij + c1 rand1ij (x

∗
ij − xtij) (22)

+ c2 rand2ij (x
∗
Gj − xtij)]

χ =
2

φ− 2 +
√
φ2 − 4φ

(23)

φ = c1 + c2, φ > 4 (24)

In [33], it is shown that the constriction model with
χ=0.729 and c1=c2=2.05 is equivalent to Eq.(19) with
w=0.729 and c1=c2=0.729×2.05 =1.49445 and was per-
formed well with using V max

j =uj .
In this study, the constriction model is used for solving

optimization problems.

4. PROPOSED METHOD
4.1. Equivalent Penalty Coefficient (EPC) Method

Let assume the POAs where a new solution x′
i is com-

pared with the old solution xi and the old solution is re-
placed with the new solution only if the new solution is
better than the old solution. When both of the objective
value and the constraint violation of x′

i are better than
those of xi, the value of the extended objective function
of x′

i is always better than that of xi, or F (x′) < F (x)
for any ρ, and vice versa. Also, if the objective values
and the constraint violations are the same, F (x) = F (x′)
holds for any ρ. Therefore, if the following conditions are
satisfied, there is no need to determine the penalty coeffi-
cient.

f(x′) ≤ f(x) and ϕ(x′) ≤ ϕ(x) (25)
or f(x) ≤ f(x′) and ϕ(x) ≤ ϕ(x′)

Otherwise, there exist a solution with a better objective
value and a worse violation value and a solution with a
worse objective value and a better violation value. The
equivalent penalty coefficient value (EPC) ρi is defined
as the value that makes the extended objective values of
xi and x′

i the same:

F (xi) = F (x′
i) (26)

f(xi) + ρiϕ(xi) = f(x′
i) + ρiϕ(x

′
i) (27)

ρi = −f(xi)− f(x′
i)

ϕ(xi)− ϕ(x′
i)

(28)

Let assume that f(xi) < f(x′
i) and ϕ(x′

i) < ϕ(xi). If
the penalty coefficient is larger than ρi, F (x′

i) < F (xi)
is satisfied and x′

i is the better solution. On the contrary,
if the penalty coefficient is smaller than ρi, F (xi) <
F (x′

i) is satisfied and xi is the better solution.
Let consider the list of ρi sorted in ascending order,

H = {ρk | ρk < ρk+1, k = 1, 2, · · · } where |H| ≤ N
and |H| is the number of elements in H . In order to con-
trol the penalty coefficient simply and adaptively, an al-
gorithm parameter Rcp (Rcp ≥ 0), which is a constraint
priority rate, is introduced. The coefficient ρ is decided
as the Rcp|H|-th element in H using linear interpolation,

because if Rcp|H| is not integer such as 1.5, ρ1.5 is not
defined and can be obtained from ρ1 and ρ2, as follows:

ρ =

 Rcp|H|ρ1, if ⌊Rcp|H|⌋ < 1
ρ|H|Rcp, if Rcp > 1
ρ⌊Rcp|H|⌋ +△Rcp△ρ, otherwise

(29)

△Rcp = Rcp|H| − ⌊Rcp|H|⌋ (30)
△ρ = ρ⌈Rcp|H|⌉ − ρ⌊Rcp|H|⌋ (31)

where ⌊·⌋ is rounding down to the nearest integer and ⌈·⌉
is rounding up to the nearest integer. The first equation
in Eq.(29) is the interpolation between 0 and ρ1. When
Rcp = 0, only the objective value will be optimized be-
cause ρ = 0. When Rcp > 1, only the constraint vio-
lation will be optimized because ρ > ρ|H| and the con-
straint violation has always higher priority than the objec-
tive value. Setting Rcp > 1 has similar effect of ρ = ∞
in the ordinary penalty function method. It is thought that
a feasible solution can be found by changing Rcp to over
1 theoretically.

4.2. Adaptive Control of the Constraint Priority Rate
The EPC method can adaptively control the penalty

coefficient using the fixed value of Rcp = 0.9 in prob-
lems without equality constraints. However, it is difficult
to solve some problems with equality constraints. There-
fore, an adaptive control of Rcp is introduced as follows:

Rcp =

{
Rmin

cp , if Rf = 0
Rmin

cp + (1−Rmin
cp )(1−Rf ), otherwise (32)

Rf =
|{xi | ϕ(xi) = 0}|

|P |
(33)

where Rmin
cp (0 ≤ Rmin

cp < 1) is the minimum value of
Rcp. If Rf = 0, that is, the population is far from the
feasible region, Rcp = Rmin

cp so that the population grad-
ually approaches the feasible region. If Rf > 0, that is,
the population is near the feasible region, Rcp is adap-
tively controlled so that the population does not leave the
region. The recomended value of Rmin

cp is 0.9 which is
determined based on some preliminary experiments.

4.3. Mutation and Repair
In this study, a mutation operation similar to rand/1

mutation of DE is utilized as follows:

xnew
i = x∗

r1 + F (x∗
r2 − x∗

r3) (34)

where r1, r2 and r3 are random numbers in
{1, 2, · · · , N}\{i}, whereN is the number of agents, and
are different from each other. F is a scaling factor. A new
position is created using personal best positions. It is ex-
pected that the mutation will help to move in a narrow
feasible region. The mutation is applied with probability
Pm = 0.25 based on some preliminary experiments.

When a new position is out of the search space, the
position is repaired to be inside of the search space. The
repaired position is the middle of the violated bounds and
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the corresponding variables of the current position as fol-
lows:

xrepairedij =


1
2 (lj + xtij) xt+1

ij < lj
1
2 (uj + xtij) xt+1

ij > uj
xt+1
ij otherwise

(35)

Also, the velocity is changed so that the bounds are not
violated again as follows:

vrepairedij =

{
− 1

2v
t+1
ij xt+1

ij < lj or xt+1
ij > uj

vt+1
ij otherwise

(36)

4.4. The algorithm of the proposed method
The algorithm of the proposed method PSOEPC (PSO

with EPC) is as follows:
1. Initializing agents: Initial agent i with a position xi

and a velocity vi is created for all i ∈ {1, 2, · · · , N}
where N is the number of agents. xi is randomly
generated in the search space S where each element
xij is a uniform random number in [lj , uj ]. vi is
initialized randomly where vij is a random number
in [−Vmaxj

, Vmaxj
] and Vmaxj

= 1
2 (uj − lj), which

is half the range of j-th variable, in this study.
2. Evaluating agents: All agents i are evaluated and
f(xi) and ϕ(xi) are obtained. The personal best
position is set to the initial position, namely x∗

i =xi.
3. Obtaining the feasible rate: The feasible rate of

personal best positions is obtained according to
Eq.(33).

4. Termination condition: If the number of function
evaluations exceeds the maximum number of func-
tion evaluations FEmax, the algorithm is termi-
nated.

5. Updating agents: Mainly, the agents are updated by
the movement. The new velocity of each agent i are
obtained according to Eq.(19). The each element of
the new velocity is truncated in [−Vmaxj

, Vmaxj
].

The new position is obtained according to Eq.(20).
Otherwise, with probability Pm, the agents are up-
dated by the mutation according to Eq. (34). If the
position is out of the search space, the position and
the velocity is repaired according to Eqs. (35) and
(36).

6. EPC method: ρi, Rcp and then ρ are determined ac-
cording to Eqs. (28), (32) and (29) using the feasible
rate.

7. Updating the personal best positions: The values of
the extended objective function for the new positions
and the best visited positions are obtained according
to Eq. (2). If the extended objective value of the
new position is better than that of the personal best
position, the personal best position is replaced with
the new position. If the extended objective value of
the new position is better than that of the best posi-
tion in all agents, the best position is set to the new
position.

8. Go back to Step2.

5. SOLVING NONLINEAR
OPTIMIZATION PROBLEMS

In this paper, thirteen benchmark problems that are
mentioned in some studies [3, 15, 16] are optimized by
the proposed method, or PSOEPC (PSO with EPC
method).

5.1. Test problems and the experimental conditions
In the thirteen benchmark problems, problems g03,

g05, g11 and g13 contain equality constraints. In prob-
lems with equality constraints, the equality constraints
are relaxed and converted to inequality constraints ac-
cording to Eq. (37), which is adopted in many methods:

|hj(x)| ≤ 10−4 (37)

Problem g12 has disjointed feasible regions. Table 1
shows the outline of the thirteen problems [16, 34]. The
table contains the number of variables D, the form of the
objective function, the number of linear inequality con-
straints (LI), nonlinear inequality constraints (NI), linear
equality constraints (LE), nonlinear equality constraints
(NE) and the number of constraints active at the optimal
solution.

Table 1 Summary of test problems

f D Form of f LI NI LE NE active
g01 13 quadratic 9 0 0 0 6
g02 20 nonlinear 1 1 0 0 1
g03 10 polynomial 0 0 0 1 1
g04 5 quadratic 0 6 0 0 2
g05 4 cubic 2 0 0 3 3
g06 2 cubic 0 2 0 0 2
g07 10 quadratic 3 5 0 0 6
g08 2 nonlinear 0 2 0 0 0
g09 7 polynomial 0 4 0 0 2
g10 8 linear 3 3 0 0 6
g11 2 quadratic 0 0 0 1 1
g12 3 quadratic 0 93 0 0 0
g13 5 nonlinear 0 0 1 2 3

Settings for PSO are as follows: The constriction
model with w=0.729 and c1=c2=1.49445 is adopted. The
number of agents N = 50 and the maximum number of
function evaluations FEmax = 200, 000. Settings for the
mutation are as follows: The mutation rate Pm=0.25 and
scaling factor F is randomly generated in [0.4,0.9]. Set-
tings for EPC method are as follows: Every constraint vi-
olation is defined as a simple sum of constraints, or p = 1
in Eq. (5). The Rcp is controlled using Eq. (32) with
Rmin

cp = 0.9.
In this paper, 30 independent runs are performed.

5.2. Experimental results
In the experiments, several methods are examined:

PSO with the feasibility rule (PSO), PSOEPC without the
mutation (PSOEPC), PSO with the mutation (PSOm) and
PSOEPC with the mutation (PSOEPCm). Two represen-
tative topologies, or fully-connected topology (gbest) and
the ring topology (ring), are also examined. In the ring
topology, the neighborhood size is 3, that is, i-th agent is
connected to (i− 1)-th and (i+ 1)-th agent.

Table 2 shows results of the best, median, mean, worst
values and the standard deviation for the above methods.
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The success rate, which is the ratio of finding a feasible
solution in 30 runs, is shown in parentheses.

All methods found optimal solutions in all 30 runs for
g04 and g12. As for g01, PSO, PSOm, PSOEPC and
PSOEPCm with the ring topology found the optimal so-
lutions in all 30 runs. As for g02, PSOEPCm (ring) at-
tained the best results. As for g03, g07, g10 and g13,
PSOEPCm (ring) attained the best results. As for g05,
PSOEPCm (gbest) and PSOEPCm (ring) attained the best
results and found the optimal solutions in all runs. As for
g06 and g11, PSOEPC (ring), PSOm with both topolo-
gies and PSOEPCm with both topologies found the op-
timal solutions in all runs. As for g08, all methods ex-
cept for PSOEPC (gbest) found the optimal solutions in
all runs. As for g09, PSOm with both topologies and
PSOEPCm with both topologies found the optimal solu-
tions in all runs. Therefore, it is thought that PSOEPCm
(ring) is the best method which find near optimal solu-
tions in all runs for all problems except for g02.

Wilcoxon signed rank test is performed and the result
for each function is shown in Table 3. Symbols ‘+’, ‘−’
and ‘=’ are shown when a method is significantly better
than PSOEPC (ring), is significantly worse than PSOEPC
(ring), and is not significantly different from PSOEPC
(ring), respectively. Symbols ‘++’ and ‘−−’ are shown
when the significance level is 1% and ‘+’ and ‘−’ are
shown when the significance level is 5%.

It is thought that EPC method is effective because
PSOEPCm (ring) is significantly better than PSOm (ring)
in 5 functions. It is thought that the mutation is effec-
tive because PSOEPCm (ring) is significantly better than
PSOEPC (ring) in 9 functions. It is thought that the ring
topology is effective because PSOEPCm (ring) is sig-
nificantly better than PSOEPCm (gbest) in 5 functions.
Thus, it is thought that the EPC method, the mutation and
the ring topology is effective to constrained optimization.

6. CONCLUSIONS

In the penalty function method, feasible solutions can
be found by increasing the penalty coefficient towards in-
finity theoretically, although it is difficult to do so compu-
tationally. In the EPC method, the penalty coefficient is
controlled adaptively using the equivalent penalty coeffi-
cient (EPC) values. The constraint priority rate is defined
to select a proper EPC value from EPC values and the
adaptive control of the constraint priority rate using the
feasible rate of the population is also defined.

In this study, the EPC method is introduced to PSO,
the mutation and repair operations for PSO are defined,
and PSOEPC is proposed. The experiments for solving
well known constrained problems were performed and it
was shown that PSOEPC could search for high quality
solutions in all problems compare with standard methods.

In the future, we will apply EPC method to various real
world problems that have large numbers of decision vari-
ables and constraints. Also, we will introduce the idea of
EPC method into other POAs.
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