
SolvingNonlinear Optimization Problems by Differential Evolution with a
Rotation-Invariant Crossover Operation using Gram-Schmidt process

Tetsuyuki Takahama
Department of Intelligent Systems

Hiroshima City University
Asaminami-ku, Hiroshima, 731-3194 Japan
Email: takahama@info.hiroshima-cu.ac.jp

Setsuko Sakai
Faculty of Commercial Sciences

Hiroshima Shudo University
Asaminami-ku, Hiroshima, 731-3195 Japan

Email: setuko@shudo-u.ac.jp

Abstract— Differential Evolution (DE) is a newly proposed
evolutionary algorithm. DE is a stochastic direct search method
using a population or multiple search points. DE has been
successfully applied to optimization problems including non-
linear, non-differentiable, non-convex and multimodal func-
tions. However, the performance of DE degrades in problems
with strong linkage among variables, where variables are
related strongly each other. One of the desirable properties of
optimization algorithms for solving the problems with strong
linkage is rotation-invariant property. The rotation-invariant
algorithms can solve rotated problems where variables are
strongly related as in the same way of solving non-rotated
problems. In DE, two operations are applied to each indi-
vidual: a mutation operation, which is rotation-invariant, and
a crossover operation, which is not rotation-invariant. Thus,
DE is not rotation-invariant. In this study, we propose a
new crossover operation that is rotation-invariant. In order
to achieve rotation-invariant property, instead of using the
fixed coordinate system, a new coordinate system is build
from a current population, or search points in search process.
Independent points, or vectors are selected from the population,
Gram-Schmidt process is applied to them in order to obtain
orthogonal vectors, and the vectors form the new coordinate
system. The effect of the rotation-invariant crossover operation
is shown by solving some benchmark problems.

Keywords-differential evolution; crossover; rotation-
invariant; Gram-Schmidt process

I. I NTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs). Differential
evolution (DE) is a newly proposed EA by Storn and Price
[1]. DE is a stochastic direct search method using a popu-
lation or multiple search points. DE has been successfully
applied to optimization problems including non-linear, non-
differentiable, non-convex and multimodal functions [2], [3].
It has been shown that DE is a very fast and robust algorithm.

However, the performance of DE degrades in problems
with strong linkage among variables, where variables are
related strongly each other. One of the desirable properties of
optimization algorithms for solving the problems with strong
linkage is rotation-invariant property. The rotation-invariant

algorithms can solve rotated problems where variables are
strongly related as in the same way of solving non-rotated
problems. In DE, two operations are applied to each indi-
vidual: a mutation operation, which is rotation-invariant, and
a crossover operation, which is not rotation-invariant. Thus,
DE is not rotation-invariant [2].

In this study, we propose a new crossover operation that
is rotation-invariant. In DE, a mutant vector is generated
for each parent by using a base vector and one or more
difference vectors which are the difference between two in-
dividuals. A child, or a trial vector is generated by crossover
which decomposes the difference between a parent and the
mutant vector into elements of a coordinate system, some
elements are selected probabilistically and the elements are
combined. In order to achieve rotation-invariant property, in-
stead of using the fixed coordinate system, a new coordinate
system is build from a current population, or search points in
search process. Independent points, or vectors are selected
from the population, Gram-Schmidt process is applied to
them in order to obtain orthogonal vectors, and the vectors
form the new coordinate system.

The effect of the rotation-invariant crossover operation is
shown by solving some benchmark problems.

In Section II, the rotation-invariant property of some
crossover operations are examined. Differential evolution is
explained in Section III. A new rotation-invariant crossover
operation is proposed in Section IV. In Section V, experimen-
tal results on some problems are shown. Finally, conclusions
are described in Section VI.

II. OPTIMIZATION AND ROTATION-INVARIANT

PROPERTY

In this section, optimization problems are defined and
rotation-invariant property is explained.

A. Optimization Problems

In this study, the following optimization problem (P) with
lower bound and upper bound constraints will be discussed.

(P) minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , n,

(1)

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 533

wherex = (x1, x2, · · · , xn) is ann dimensional vector and
f(x) is an objective function. The functionf is a nonlinear
real-valued function. Valuesli andui are the lower bound
and the upper bound ofxi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted byS.

B. Rotation-Invariant Crossover

In EAs, crossover operations play important roles in opti-
mization process. Some representative crossover operations
used in real-coded EAs are examined from the viewpoint
of rotation-invariant property in the following. DE adopts
two-parent crossover operations, although there exist some
crossover operations using multiple (more than two) parents
such as unimodal normal distribution crossover (UNDX) [4]
and simplex crossover (SPX) [5]. In two-parent crossover
operations, it can be assumed that two individualsx andy
are recombined and a childz is generated.

• Arithmetic crossover [6]
Arithmetic crossover generates a child that is a linear
combination of two parents:

zi = rxi + (1− r)yi (2)

where r is a uniform random number in[0, 1]. Fig.
1 shows the arithmetic crossover. Black circles cor-
respond to parents and a white circle corresponds to
the child. When a given problem is rotated and search
points are rotated, the relation between parents and the
child that is denoted by a gray (green) circle is not
changed. Therefore, the arithmetic crossover is rotation-
invariant.

Figure1. Arithmetic crossover and its rotation

• Uniform crossover
Uniform crossover generates a child by taking each
gene from the first or the second parent with the same
probability:

zi =

{
xi with prob. 0.5
yi with prob. 0.5

(3)

Fig. 2 shows the uniform crossover. Black circles cor-
respond to parents and one of white circles corresponds
to the child. When a given problem is rotated and

search points are rotated, the child corresponds to
one of circles with (red) diagonal lines and does not
correspond to one of gray (green) circles. Therefore,
the uniform crossover is not rotation-invariant.

Figure2. Uniform crossover and its rotation

• Blend crossover (BLX-α) [7]
Blend crossover can be defined as follows:

zi = rixi + (1− ri)yi (4)

whereri is a uniform random number in[−α, 1 + α]
and generated in each dimension. The parameterα
(α ≥ 0) specifies how much the region, where a child
will be generated, is enlarged. Ifα is zero, the child
is generated in a hyper-rectangle that is formed by two
parents. The rectangle is shown in Fig. 2 by dotted
lines. Therefore, the blend crossover is not rotation-
invariant.

In this study, a rotation-invariant crossover operation is
proposed for DE.

III. D IFFERENTIAL EVOLUTION

In this section, the outline of DE is described.

A. Outline

In DE, initial individuals are randomly generated within
given search space and form an initial population. Each
individual containsn genes as decision variables. At each
generation or iteration, all individuals are selected as par-
ents. Each parent is processed as follows: The mutation
operation begins by choosing1 + 2 num individuals from
the population except for the parent in the processing. The
first individual is a base vector. All subsequent individuals
are paired to createnum difference vectors. The difference
vectors are scaled by a scaling factorF and added to
the base vector. The resulting vector, or a mutant vector,
is then recombined with the parent. The probability of
recombination at an element is controlled by a crossover
rate CR. This crossover operation produces a trial vector.
Finally, for survivor selection, the trial vector is accepted
for the next generation if the trial vector is better than the
parent.

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 534

Thereare some variants of DE that have been proposed,
such as DE/rand/1/exp. The variants are classified using the
notation DE/base/num/cross.

“base” specifies a way of selecting an individual that
will form the base vector. For example, DE/rand selects an
individual for the base vector at random from the population.
DE/best selects the best individual in the population. In
case of DE/rand/1, for example, for each parentxi, three
individuals xp1, xp2 and xp3 are chosen randomly from
the population without overlappingxi and each other. A
new vector, or a mutant vectorx′ is generated by the base
vectorxp1 and the difference vectorxp2 −xp3, whereF is
the scaling factor.

x′ = xp1 + F (xp2 − xp3) (5)

“num” specifies the number of difference vectors used to
perturb the base vector.

“cross” specifies the type of crossover used to create a
child. For example, ‘bin’ indicates that the crossover is con-
trolled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by a
kind of two-point crossover using exponentially decreasing
the crossover rate. Fig. 3 shows the binomial and exponential
crossover. A new childxchild is generated from the parent
xi and the mutant vectorx′, whereCR is a crossover rate.

binomial crossover DE/·/·/bin
jrand=randint(1,n);
for(k =1; k ≤ n; k++) {

if(k == jrand || u(0, 1) < CR) xchild
k =x′

k;
else xchild

k =xi
k;

}
exponential crossover DE/·/·/exp

k=1; j=randint(1,n);
do {

xchild
j =x′

j ;
k=k+1; j=(j + 1)%n;

} while(k ≤ n && u(0, 1) < CR);
while(k ≤ n) {

xchild
j =xi

j ;
k=k+1; j=(j + 1)%n;

}

Figure 3. Binomial and exponential crossover operation, where
randint(1,n) generates an integer randomly from[1, n] and u(l, r) is a
uniform random number generator in[l, r].

B. The Algorithm of DE

The algorithm of DE is as follows:

Step1 Initialization of a population. InitialN individuals
P = {xi, i = 1, 2, · · · , N} are generated randomly
in search space and form an initial population.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uationFEmax, the algorithm is terminated.

Step3 DE operations. Each individualxi is selected as a
parent. If all individuals are selected, go to Step4.
A mutant vectorx′ is generated according to Eq.
(5). A trial vector (child) is generated from the par-
entxi and the mutant vectorx′ using a crossover
operation shown in Fig. 3. If the child is better
than or equal to the parent, or the DE operation is
succeeded, the child survives. Otherwise the parent
survives. Go back to Step3 and the next individual
is selected as a parent.

Step4 Survivor selection (generation change). The pop-
ulation is organized by the survivors. Go back to
Step2.

Fig. 4 shows a pseudo-code of DE/rand/1/exp.

DE/rand/1/exp()
{
// Initialize an population
P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {

for(i =1; i ≤ N ; i++) {
// DE operation

xp1=Randomly selected from P (p1 6= i);
xp2=Randomly selected from P (p2 6= i 6= p1);
xp3=Randomly selected from P (p3 6= i 6= p1 6= p2);
x′=xp1+F (xp2 − xp3);
xchild=trial vector is generated from

xi and x′ by exponential crossover;
// Survivor selection

if
(
f(xchild)≤ f(xi)

)
zi=xchild;

else zi=xi;
FE=FE+1;

}
P={zi, i = 1, 2, · · · , N};

}
}

Figure 4. The pseudo-code of DE,FE is the number of function
evaluations.

IV. ROTATION-INVARIANT CROSSOVER

The binomial and exponential crossover operations are
not rotation-invariant, because the operations are similar to
uniform crossover and select a vertex from vertices of a
hyper-rectangle, of which diagonal positions are occupied
by a parent and a mutant vector, as a child. One way of
realizing rotation-invariant crossover is to use a coordinate
system which is defined by search points instead of using
the fixed coordinate system.

A. A Coordinate System and Coordinate Vectors

A coordinate system is defined by coordinate vectors
which are mutually orthogonal unit vectors. In this study, the
coordinate vectors are generated from a population, or search
points P = {xi, i = 1, 2, · · · , N} using Gram-Schmidt
process as follows:

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 535

1) Calculating the centroid of the search points

c =
1

N

∑
i

xi (6)

2) Calculating directional vectors from the centroid

di = xi − c, i = 1, 2, · · · , N (7)

3) Selectingn vectors from the directional vectors In
this study, vectors are selected randomly from the
directional vectors.

V = {vk|k = 1, 2, · · · , n,vk ∈ {di}} (8)

4) Orthonormalizing the selected vectors using Gram-
Schmidt process

b1 =
v1

||v1||
(9)

b2 =
v2 − (v2, b1)b1

||v2 − (v2, b1)b1||
(10)

...
...

bn =
vn −

∑n−1
i=1 (vn, bi)bi

||vn −
∑n−1

i=1 (vn, bi)bi||
(11)

where(v, b) is the inner product ofv andb.

B. A Crossover Operation Based on Coordinate Vectors

In the binomial and exponential crossover operations,
either element of the parentxi or the mutant vectorx′ is
selected. In other words, the vectory from the parent to
the mutant vector is decomposed ton elements and some
elements are selected probabilistically. Thus, the operations
can be defined as follows:

y = x′ − xi (12)

xchild = xi +
∑
k∈K

(y, ek)ek (13)

where K is the set of indexes of selected elements, and
ek is a unit vector of whichk-th element is 1 and other
elements are 0. The new coordinate vectorsbk ’s can be
used instead ofek ’s. Fig. 5 shows the definition of the
rotation-invariant binomial and exponential crossovers. Fig.
6 shows an example of the rotation-invariant crossover in
two-dimensions.

C. Algorithm of DE with a rotation-invariant crossover
operation

Some modifications to standard DE are applied to DE
with a rotation-invariant crossover operation (RIDE).

1) Continuous generation model [8], [9]. Usually discrete
generation model is adopted in DE and when the child
is better than the parent, the child survives in the
next generation. In this study, when the child is better
than the parent, the parent is immediately replaced by
the child. It is thought that the continuous generation

y=x′-x i;
xchild=xi;

Rotation-invariant binomial crossover
j=randint(1,n);
for(k =1; k ≤ n; k++) {

if(k == j || u(0, 1) < CR)
xchild=xchild+(y, bk)bk;

}
Rotation-invariant exponential crossover

k=1; j=randint(1,n);
do {

xchild=xchild+(y, bj)bj ;
k=k+1; j=(j + 1)%n;

} while(k ≤ n && u(0, 1) < CR);

Figure5. Binomial and exponential rotation-invariant crossover operations,
where randint(1,n) generates an integer randomly from[1, n] andu(l, r)
is a uniform random number generator in[l, r].

Figure6. Rotation-invariant crossover in two-dimensions

model improves efficiency because the model can use
newer information than the discrete model.

2) Generating two children at most [10], [11]. When a
parent generates a child by using standard crossover
and the child is not better than the parent, the parent
generates another child by using rotation-invariant
crossover. It is thought that generating two children
improves robustness of the search process because two
types of crossover operations will generate different
types of children and the diversity of the search points
will increase.

3) Reflecting back out-of-bound solutions [12]. In order
to keep bound constraints, an operation to move a
point outside of search space into the inside of the
space is required. There are some ways to realize
the movement: generating solutions again, cutting off
the solutions on the boundary, and reflecting points
back to the inside of the boundary [13]. In this study,
reflecting back is used:

xij =


li + (li − xij)−

⌊
li−xij

ui−li

⌋
(ui − li) (xij < li)

ui − (xij − ui) +

⌊
xij−ui

ui−li

⌋
(ui − li) (xij > ui)

xij (otherwise)
(14)

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 536

where bzc is the maximum integer smaller than or
equal toz. This operation is applied when a new point
is generated by DE operations.

Fig. 7 shows the pseudo-code of RIDE.

RIDE/rand/1/exp()
{
// Initialize an population
P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
B=obtained coordinate vectors;
for(i =1; i ≤ N ; i++) {

for(k =1; k<=2; k++) {
// DE operation

xp1=Randomly selected from P (p1 6= i);
xp2=Randomly selected from P (p2 6= i 6= p1);
xp3=Randomly selected from P (p3 6= i 6= p1 6= p2);
x′=xp1+F (xp2 − xp3);
if(k==1)

xchild=trial vector is generated from
xi and x′ by exponential crossover;

else
xchild=trial vector is generated from

xi and x′ by rotation-invariant
exponential crossover using B;

FE=FE+1;
// Survivor selection

if
(
f(xchild)≤ f(xi)

)
{

xi=xchild;
break;

}
}

}
}

}

Figure 7. The pseudo-code of RIDE,FE is the number of function
evaluations.

V. SOLVING OPTIMIZATION PROBLEMS

In this paper, well-known thirteen benchmark problems
are solved.

A. Test Problems and Experimental Conditions

The 13 scalable benchmark functions are shown in Ta-
ble I [14]. All functions have an optimal value 0. Some
characteristics are briefly summarized as follows: Functions
f1 to f4 are continuous unimodal functions. The function
f5 is Rosenbrock function which is unimodal for 2- and 3-
dimensions but may have multiple minima in high dimension
cases [15]. The functionf6 is a discontinuous step function,
and f7 is a noisy quartic function. Functionsf8 to f13 are
multimodal functions and the number of their local minima
increases exponentially with the problem dimension [16].

Independent 30 runs are performed for 13 problems. The
dimension of problems is 40 (D=40). Each run stops when a
near optimal solution, which has equivalent objective value
to the optimal solution, is found. In this study, when the
difference between the best objective value and the optimal

Table I
TEST FUNCTIONS OF DIMENSIOND. THESE ARE SPHERE, SCHWEFEL

2.22, SCHWEFEL 1.2, SCHWEFEL 2.21, ROSENBROCK, STEP, NOISY

QUARTIC, SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK , AND

TWO PENALIZED FUNCTIONS, RESPECTIVELY[17]

Test functions Boundconstraints

f1(x) =
∑D

i=1
x2
i [−100, 100]D

f2(x) =
∑D

i=1
|xi|+

∏D

i=1
|xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i

j=1
xj

)2

[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1
bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1
ix4

i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1
−xi sin

√
|xi|

+D · 418.98288727243369
[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D

i=1
x2
i

)
− exp

(
1
D

∑D

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D

i=1
x2
i −

∏D

i=1
cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D
[10 sin2(πy1) +

∑D−1

i=1
(yi − 1)2

{1+ 10 sin2(πyi+1)}+(yD − 1)2]

+
∑D

i=1
u(xi, 10, 100, 4)

whereyi = 1+ 1
4
(xi +1) andu(xi, a, k,m) ={

k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1)+
∑D−1

i=1
(xi−1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}] +
∑D

i=1
u(xi, 5, 100, 4)

[−50, 50]D

value becomes less than10−7, the run stops. Inf7, it is
difficult to find the good objective value, because a random
noise is added. It is assumed that the optimal value off7 is
10−2 in this experiment.

The efficiency of three algorithms, SDE (standard DE
with discrete generation model), CDE (DE with Continu-
ous model) and RIDE are compared. The parameters are:
F = 0.7, CR = 0.9 and exponential crossover is adopted,
because these settings showed very good and stable per-
formance [18]. The population size is 60 (N = 60). The
number of function evaluations (FEs) until finding a near
optimal solution is compared.

B. Experimental Results

Table II shows the experimental results. The mean number
of FEs until finding a near optimal value and their standard

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 537

Table II
EXPERIMENTAL RESULTS. MEAN VALUE ± STANDARD DEVIATION AND

RATIO OF THE MEAN VALUE RELATIVE TO THAT OF SDE IN 30 RUNS

ARE SHOWN

SDE CDE RIDE
f1 120714.9± 1228.8 119090.0± 1042.4 51547.8± 1214.6

(1.000) (0.987) (0.433)
f2 171604.0± 1417.5 168699.2± 1740.7 86474.9± 1366.2

(1.000) (0.983) (0.513)
f3 1015452.8± 12888.5 1014411.1± 13237.6 178453.9± 4588.0

(1.000) (0.999) (0.176)
f4 1064604.6± 10676.0 1058717.6± 11755.0 187892.2± 3654.8

(1.000) (0.994) (0.177)
f5 395632.8± 7141.7 384640.8± 5492.1 343023.3± 7809.0

(1.000) (0.972) (0.892)
f6 48922.1± 933.9 48378.0± 1190.6 19771.3± 1019.1

(1.000) (0.989) (0.409)
f7 668549.4± 102128.1 637370.6± 129435.1 49654.5± 15911.3

(1.000) (0.953) (0.078)
f8 144896.8± 2681.3 142918.6± 2039.9 128269.3± 4336.1

(1.000) (0.986) (0.897)
f9 260549.0± 6495.7 259204.2± 6291.9 349479.2± 12522.2

(1.000) (0.995) (1.348)
f10 180778.8± 1574.8 177994.4± 1690.7 78384.2± 1355.4

(1.000) (0.985) (0.440)
f11 127930.9± 4080.4 127655.2± 4210.2 60420.4± 1597.8

(1.000) (0.998) (0.473)
f12 107109.1± 1408.0 106601.9± 1631.1 49109.4± 1703.9

(1.000) (0.995) (0.461)
f13 115676.4± 1441.7 114009.8± 979.3 53068.2± 1167.2

(1.000) (0.986) (0.465)

deviation are shown in the top row for each function. Also,
the ratio of the mean number of FEs relative to that of SDE
is shown in the bottom row and in parentheses. The best
result among three algorithms is highlighted using bold face
fonts.

As for 6 problemsf1, f6, f10, f11, f12 and f13, RIDE
can find near optimal solutions in less than half FEs, and
in about half FEs for the problemf2 compared with SDE
and CDE. As for 3 problemsf3, f4 andf7, RIDE can solve
the problems more than 5 times faster than other algorithms.
For 2 problemsf5 andf8, RIDE solved the problems about
10% faster than the others. As for the problemf9, CDE
solved the problem fastest and RIDE solved it slowest. It is
thought that the rotation-invariant property is not effective
to the problem.

It is shown that RIDE can solve 10 problems very fast
and 2 problems slightly fast. Thus, it is thought that the
rotation-invariant crossover is effective to various problems.

Figures 8 to 20 show the change of best objective value
found over the number of FEs within 150,000 evaluations.
Apparently, RIDE can find better objective values faster than
SDE and CDE in all problems except forf9.

VI. CONCLUSION

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve nonlinear optimization
problems. In this study, we proposed a rotation-invariant
crossover in order to improve the efficiency and also stability

1e-030

1e-025

1e-020

1e-015

1e-010

1e-005

1

100000

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure8. The graph off1

1e-015

1e-010

1e-005

1

100000

1e+010

1e+015

1e+020

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure9. The graph off2

1e-006

0.0001

0.01

1

100

10000

1e+006

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure10. The graph off3

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

10

100

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure11. The graph off4

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 538

10

100

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE
RIDE

Figure12. The graph off5

0.01

0.1

1

10

100

1000

10000

100000

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE
RIDE

Figure13. The graph off6

0.001

0.01

0.1

1

10

100

1000

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE
RIDE

Figure14. The graph off7

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

1e+006

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE
RIDE

Figure15. The graph off8

10

100

1000

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure16. The graph off9

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure17. The graph off10

1e-020

1e-015

1e-010

1e-005

1

100000

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure18. The graph off11

1e-030

1e-025

1e-020

1e-015

1e-010

1e-005

1

100000

1e+010

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE

RIDE

Figure19. The graph off12

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 539

1e-030

1e-025

1e-020

1e-015

1e-010

1e-005

1

100000

1e+010

20000 40000 60000 80000 100000 120000 140000

O
bj

ec
tiv

e
va

lu
e

Evaluations

SDE
CDE
RIDE

Figure20. The graph off13

of DE. It was shown that RIDE can reduce the number of
function evaluations for finding near optimal solutions more
than 50% in 9 problems out of 13 problems. Thus, it is
thought that RIDE is a very efficient optimization algorithm
compared with standard DEs.

In the future, we will apply RIDE to various real world
problems that have large numbers of decision variables and
constraints.

ACKNOWLEDGMENT

This research is supported in part by Grant-in-Aid for
Scientific Research (C) (No. 20500138,22510166) of Japan
society for the promotion of science.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution – A simple
and efficient heuristic for global optimization over continuous
spaces,”Journal of Global Optimization, vol. 11, pp. 341–
359, 1997.

[2] K. V. Price, R. M. Storn, and J. A. Lampinen,Differential
Evolution: A Practical Approach to Global Optimization.
Springer, 2005.

[3] U. K. Chakraborty, Ed.,Advances in Differential Evolution.
Springer, 2008.

[4] I. Ono and S. Kobayashi, “A real coded genetic algorithm
for function optimization using unimodal normal distributed
crossover,” inProceedings of the 7th International Conference
on Genetic Algorithms, 1997, pp. 246–253.

[5] S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent
recombination with simplex crossover in real coded genetic
algorithms,” inProc. of Genetic and Evolutionary Computa-
tion Conference(GECCO’99), 1999, pp. 657–664.

[6] Z. Michalewicz, Genetic algorithms + data structures =
evolution programs (3rd ed.). London, UK: Springer-Verlag,
1996.

[7] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic
algorithms and interval schemata,” inFoundations of Genetic
Algorithms 2, L. D. Whitley, Ed. San Mateo, CA: Morgan
Kaufmann Publishers, 1993, pp. 187–202.

[8] T. Takahama, S. Sakai, and N. Iwane, “Solving nonlinear
constrained optimization problems by theε constrained dif-
ferential evolution,” inProc. of the 2006 IEEE Conference on
Systems, Man, and Cybernetics, Oct. 2006, pp. 2322–2327.

[9] T. Takahama and S. Sakai, “Reducing function evaluations in
differential evolution using rough approximation-based com-
parison,” inProc. of the 2008 IEEE Congress on Evolutionary
Computation, Jun. 2008, pp. 2307–2314.

[10] T. Takahama and S. Sakai, “Constrained optimization by the
epsilon constrained differential evolution with an archive and
gradient-based mutation,” inProc. of the 2010 IEEE Congress
on Evolutionary Computation, Jul. 2010, pp. 1680–1688.

[11] T. Takahama and S. Sakai, “Efficient constrained optimization
by theε constrained adaptive differential evolution,” inProc.
of the 2010 IEEE Congress on Evolutionary Computation,
Jul. 2010, pp. 2052–2059.

[12] S. Kukkonen and J. Lampinen, “Constrained real-parameter
optimization with generalized differential evolution,” inProc.
of the 2006 IEEE Congress on Evolutionary Computation.
Vancouver, BC, Canada: IEEE Press, 16-21 July 2006, pp.
207–214.

[13] T. Takahama and S. Sakai, “Solving difficult constrained
optimization problems by theε constrained differential evolu-
tion with gradient-based mutation,” inConstraint-Handling in
Evolutionary Optimization, E. Mezura-Montes, Ed. Springer-
Verlag, 2009, pp. 51–72.

[14] Z. Jingqiao and A. C. Sanderson, “JADE: Adaptive differen-
tial evolution with optional external archive,”IEEE Transac-
tions on Evolutionary Computation, vol. 13, no. 5, pp. 945–
958, Oct. 2009.

[15] Y.-W. Shang and Y.-H. Qiu, “A note on the extended rosen-
brock function,” Evolutionary Computation, vol. 14, no. 1,
pp. 119–126, 2006.

[16] X. Yao, Y. Liu, , and G. Lin, “Evolutionary programming
made faster,”IEEE Transactions on Evolutionary Computa-
tion, vol. 3, pp. 82–102, 1999.

[17] X. Yao, Y. Liu, K.-H. Liang, and G. Lin, “Fast evolutionary
algorithms,” in Advances in evolutionary computing: theory
and applications, A. Ghosh and S. Tsutsui, Eds. New York,
NY, USA: Springer-Verlag New York, Inc., 2003, pp. 45–94.

[18] T. Takahama and S. Sakai, “Fast and stable constrained opti-
mization by theε constrained differential evolution,”Pacific
Journal of Optimization, vol. 5, no. 2, pp. 261–282, May
2009.

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 ©2010 IEEE 540

