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Abstract— Differential Evolution (DE) is a newly proposed
evolutionary algorithm. DE has been successfully applied to
optimization problems including non-linear, non-differentiable,
non-convex and multimodal functions. However, the performance
of DE degrades in problems having strong dependence among
variables, where variables are strongly related to each other.
One of the desirable properties of optimization algorithms for
solving the problems with the strong dependence is rotation-
invariant property. In DE, the mutation operation is rotation-
invariant, but the crossover operation is not rotation-invariant
usually. In this study, we propose a new operation, called local
sampling operation that is rotation-invariant. In the operation,
independent points are selected from the population, difference
vectors from a parent to the points span a local area centered
at the parent, and a new point is generated around the area.
Also, the operation is used for judging whether intensive search
or extensive search is desirable in each generation. The effect
of the proposed method is shown by solving some benchmark
problems.

Keywords-differential evolution; rotation-invariant; intensive
search; extensive search

I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs). Differential
evolution (DE) is a newly proposed EA by Storn and Price
[1]. DE is a stochastic direct search method using a popu-
lation or multiple search points. DE has been successfully
applied to optimization problems including non-linear, non-
differentiable, non-convex and multimodal functions [2]–[4].
It has been shown that DE is a very fast and robust algorithm.

However, the performance of DE degrades in problems
having strong dependence among variables, where variables
are strongly related to each other. One of the desirable
properties of optimization algorithms for solving the problems
with the strong dependence is rotation-invariant property. The
rotation-invariant algorithms can solve rotated problems where
variables are strongly related as in the same way of solving
non-rotated problems. In DE, two operations are applied to
each individual: The mutation operation is rotation-invariant,
but the crossover operation is not rotation-invariant usually. In
this case, DE is not rotation-invariant [2].

In this study, we propose a new operation, called local
sampling operation that is rotation-invariant. In the opera-
tion, independent points are selected from the population and
difference vectors from a parent to the selected points are
obtained. A local area centered at the parent is spanned by
the difference vectors. A new point or a child is generated
from the vectors around the area using a uniform probability
distribution. The operation samples a point around the local
area and realizes intensive search. Thus, it is expected that
the operation improves the efficiency of the search. Also,
the operation is used for judging whether intensive search
or extensive search is desirable. In this study, both of the
local sampling operation and the ordinary DE operations, or
ordinary mutation and crossover, are used probabilistically. If
the success rate of the local sampling operation is lower than
that of the ordinary operations, it is thought that extensive
search will be more desirable than intensive search. On the
contrary, if the success rate of the local sampling operation
is greater than that of the ordinary operations, the effect
of the intensive search might be too strong. In this case,
the probability of the intensive search will be decreased to
prevent premature convergence. The effect of the proposed
method is shown by solving 13 benchmark problems including
multimodal problems and problems with strong dependence.

In Section II, rotation-invariant operations are briefly re-
viewed. DE is explained in Section III, and DE with the local
sampling operation is proposed in Section IV. In Section V,
experimental results on some problems are shown. Finally,
conclusions are described in Section VI.

II. OPTIMIZATION AND ROTATION-INVARIANT PROPERTY

In this study, the following optimization problem (P) with
lower bound and upper bound constraints will be discussed.

(P) minimize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , D,

(1)

where x = (x1, x2, · · · , xD) is an D dimensional vector and
f(x) is an objective function. The function f is a nonlinear
real-valued function. Values li and ui are the lower bound
and the upper bound of xi, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.



In EAs, crossover operations play important roles in op-
timization process. Some representative crossover operations
used in real-coded EAs are examined from the viewpoint of
rotation-invariant property in the following.

A. None Rotation-Invariant Crossovers

DE adopts two-parent crossover operations. In two-parent
crossover operations, it can be assumed that two individuals
x and y are recombined and a child z is generated.

Uniform crossover generates a child that contains randomly
selected elements in either elements of two parents:

zi =

{
xi with prob. 0.5
yi with prob. 0.5 (2)

Fig. 1 shows the uniform crossover. Black circles corre-
spond to parents and one of white circles corresponds to the
child. When a given problem is rotated and search points are
rotated, the child corresponds to one of red (light gray) circles
and does not correspond to one of green (dark gray) circles.
Therefore, the uniform crossover is not rotation-invariant.

Fig. 1. Uniform crossover and its rotation

Binomial and exponential crossover operations in DE are
not rotation-invariant, because the operations are similar to
uniform crossover and select a vertex from vertices of a hyper-
rectangle, of which diagonal positions are occupied by a parent
and a mutant vector, as a child.

B. Rotation-Invariant Crossovers

Arithmetic crossover [5] generates a child that is a linear
combination of two parents:

zi = rxi + (1− r)yi (3)

where r is a uniform random number in [0, 1]. Fig. 2 shows the
arithmetic crossover. Black circles correspond to parents and
a white circle corresponds to the child. When a given problem
is rotated and search points are rotated, the relation between
parents and the child that is denoted by a green (gray) circle
is not changed. Therefore, the arithmetic crossover is rotation-
invariant.

In DE researches, some rotation-invariant operations are
proposed based on the arithmetic crossover such as current-
to-rand and current-to-best with crossover rate CR = 1
[6]. However, generated points by the operations cover very
limited area, and the diversity of the population is rapidly

Fig. 2. Arithmetic crossover and its rotation

lost. Thus, the operations have problems of premature con-
vergence. Recently, a rotation-invariant crossover operation
for DE is proposed [7]. In the operation, an orthogonal
coordinate system is built from search points using Gram-
Schmidt process. However, the operation is not scale-invariant
and the performance of the crossover operation is not high for
multimodal problems and problems with strong dependence
among variables.

There exist some crossover operations using multiple (more
than two) parents such as unimodal normal distribution
crossover (UNDX) [8], simplex crossover (SPX) [9], and
real-coded ensemble crossover (REX) [10]. REX is rotation-
invariant and scale-invariant crossover. REX generates a child
from multiple parents randomly selected from the population
without overlapping each other. Let parents be denoted by
{x1,x2, · · · ,xm} and their centroid by xg . The child xc is
generated according to the following equations:

xc = xg +
m∑
i=1

ξi(xi − xg) (4)

ξi ∼ φ(0, σ2
ξ ), σ2

ξ =
1

m
(5)

xg =
1

m

m∑
i=1

xi (6)

where m is the number of parents (m ≥ D), ξi is a
random number for each parent obeying φ, and φ(0, σ2

ξ ) is a
symmetric probability distribution with mean 0 and variance
σ2
ξ . Examples of φ are as follows:

φ(0, σ2) = N(0, (
√
1/m)2) (7)

φ(0, σ2) = U(−
√
3/m,

√
3/m) (8)

where U(l, r) is a uniform distribution in [l, r] and N is a
normal distribution.

Fig. 3 shows an example of the REX using the uniform
distribution in two-dimensions where D = 2 and m = 3.

In this study, a new operation derived from REX is pro-
posed.

III. DIFFERENTIAL EVOLUTION

In this section, the outline of DE is described.



Fig. 3. An Example of Generating Points using REX

A. Outline of Differential Evolution

In DE, initial individuals are randomly generated within
given search space and form an initial population. Each
individual contains D genes as decision variables. At each
generation or iteration, all individuals are selected as parents.
Each parent is processed as follows: The mutation operation
begins by choosing several individuals from the population
except for the parent in the processing. The first individual
is a base vector. All subsequent individuals are paired to
create difference vectors. The difference vectors are scaled by
a scaling factor F and added to the base vector. The resulting
vector, or a mutant vector, is then recombined with the parent.
The probability of recombination at an element is controlled
by a crossover rate CR. This crossover operation produces a
trial vector. Finally, for survivor selection, the trial vector is
accepted for the next generation if the trial vector is better
than the parent.

There are some variants of DE that have been proposed. The
variants are classified using the notation DE/base/num/cross
such as DE/rand/1/bin and DE/rand/1/exp.

“base” specifies a way of selecting an individual that
will form the base vector. For example, DE/rand selects an
individual for the base vector at random from the population.
DE/best selects the best individual in the population.

“num” specifies the number of difference vectors used to
perturb the base vector. In case of DE/rand/1, for example, for
each parent xi, three individuals xp1, xp2 and xp3 are chosen
randomly from the population without overlapping xi and each
other. A new vector, or a mutant vector x′ is generated by the
base vector xp1 and the difference vector xp2 − xp3, where
F is the scaling factor.

x′ = xp1 + F (xp2 − xp3) (9)

“cross” specifies the type of crossover that is used to create
a child. For example, ‘bin’ indicates that the crossover is con-
trolled by the binomial crossover using a constant crossover
rate, and ‘exp’ indicates that the crossover is controlled by
a kind of two-point crossover using exponentially decreasing
the crossover rate. Fig. 4 shows the binomial and exponential
crossover. A new child xchild is generated from the parent xi

and the mutant vector x′, where CR is a crossover rate.

binomial crossover DE/·/·/bin
jrand=randint(1,D);
for(k=1; k ≤ D; k++) {

if(k == jrand || u(0, 1) < CR) xchild
k =x′

k;
else xchild

k =xi
k;

}
exponential crossover DE/·/·/exp

k=1; j=randint(1,D);
do {

xchild
j =x′

j;
k=k+1; j=(j + 1)%D;

} while(k ≤ D && u(0, 1) < CR);
while(k ≤ D) {

xchild
j =xi

j;
k=k+1; j=(j + 1)%D;

}

Fig. 4. Binomial and exponential crossover operation, where randint(1,D)
generates an integer randomly from [1, D] and u(l, r) is a uniform random
number generator in [l, r].

B. The Algorithm of Differential Evolution

The algorithm of DE is as follows:
Step1 Initialization of a population. Initial N individuals

P = {xi, i = 1, 2, · · · , N} are generated randomly
in search space and form an initial population.

Step2 Termination condition. If the number of function
evaluations exceeds the maximum number of eval-
uation FEmax, the algorithm is terminated.

Step3 DE operations. Each individual xi is selected as a
parent. If all individuals are selected, go to Step4. A
mutant vector x′ is generated according to Eq. (9).
A trial vector (child) is generated from the parent xi

and the mutant vector x′ using a crossover operation
shown in Fig. 4. If the child is better than or equal
to the parent, or the DE operation is succeeded, the
child survives. Otherwise the parent survives. Go
back to Step3 and the next individual is selected as
a parent.

Step4 Survivor selection (generation change). The popula-
tion is organized by the survivors. Go back to Step2.

Fig. 5 shows a pseudo-code of DE/rand/1.

IV. DE WITH LOCAL SAMPLING OPERATION

In this section, local sampling operation derived from REX
and DE with the operation are proposed.

A. Local Sampling Operation

In order to realize the sampling around a local area centered
at a point or a parent, it needs to span the area by some vectors
starting at the parent. Thus, in local sampling operation, the
difference vectors from a parent xp to randomly selected m
individuals are used to generate a child where the uniform
distribution is adopted as a probability distribution as follows:

xc = xp +
m∑
i=1

ξi(xi − xp) (10)

ξi ∼ U(−
√
3/m,

√
3/m) (11)



DE/rand/1()
{
// Initialize an population
P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
for(i=1; i ≤ N; i++) {

// DE operation
xp1=Randomly selected from P(p1 6= i);
xp2=Randomly selected from P(p2 6= i 6= p1);
xp3=Randomly selected from P(p3 6= i 6= p1 6= p2);
x′=xp1+F (xp2 − xp3);
xchild=trial vector is generated from

xi and x′ by the crossover operation;
// Survivor selection

if
(
f(xchild)≤ f(xi)

)
zi=xchild;

else zi=xi;
FE=FE+1;

}
P={zi, i = 1, 2, · · · , N};

}
}

Fig. 5. The pseudo-code of DE, FE is the number of function evaluations.

where m=D + 1.

B. Algorithm of DE with Local Sampling Operation

Fig. 6 shows the pseudo-code of DE with the local sampling
operation. Some modifications to standard DE are applied for
proposed method as follows:

1) Two strategies, the local sampling operation and the
ordinary operation (rand/1/exp), are adopted and the
sampling operation is selected with a local sampling rate
(LSR). The rate is controlled by the relative success rate
of the local sampling operation (Rsucc

1 ) over that of the
ordinary operation (Rsucc

2 ). When a child survives, the
operation that has generated the child is considered as a
success operation. A new algorithm parameter LSRmax

is introduced to limit the maximum value of the local
sampling rate.
If the success rate of the local sampling operation is
greater than that of the ordinary operation (Rsucc

1 >
Rsucc

2 ), the effect of the intensive search might be too
strong and may cause too faster convergence. To prevent
the premature convergence, the local sampling rate is
lowered (0.5LSR) in next generation. If the success
rate of the local sampling operation is very lower than
that of the ordinary operation (Rsucc

1 < Rsucc
2 /3), the

intensive search by the local operation is not effective
and extensive search will be desired. In this study, the
crossover rate is decreased in order to search wider area,
because the default crossover rate 0.9 in this paper is for
searching relatively narrow area.

2) Continuous generation model [11], [12] is adopted.
Usually discrete generation model is adopted in DE
and when the child is better than the parent, the child
survives in the next generation. In this study, when the
child is better than the parent, the parent is immediately
replaced by the child. It is thought that the continuous

DE/{sampling/D+1 and rand/1/exp}()
{
CR=CR0; LSR=LSRmax; m=D + 1;

// Initialize an population

P=N individuals generated randomly in S;
for(t=1; FE ≤ FEmax; t++) {
// initialization of counters

Nsucc
op =Nfail

op =0 (op=1,2);

for(i=1; i ≤ N; i++) {
if(u(0, 1) < LSR) {

op=1;

// DE/sampling/m operation

{p1, p2, ..., pm}=Randomly selected from P without

overlapping with i and each other;

xc=xi+
∑m

k=1
ξk(xpk − xi);

}
else {

op=2;

// DE/rand/1/exp operation

xp1=Randomly selected from P(p1 6= i);

xp2=Randomly selected from P(p2 6= i 6= p1);

xp3=Randomly selected from P(p3 6= i 6= p1 6= p2);

x′=xp1+F (xp2 − xp3 );

xc=trial vector is generated from

xi and x′ by exponential crossover;

}
FE=FE+1;

// Survivor selection

if
(
f(xc)≤ f(xi)

)
{

xi=xc;

Nsucc
op =Nsucc

op + 1;

}
else

Nfail
op =Nfail

op + 1;

// updating LSR and selecting CR

Rsucc
op =

Nsucc
op

Nsucc
op +N

fail
op

(op=1,2);

LSR=0.5LSR+0.5
Rsucc

1
Rsucc

1
+Rsucc

2
;

if(LSR > LSRmax) LSR=LSRmax;

CR=CR0;

if(Rsucc
1 > Rsucc

2 )

LSR=0.5LSR; // prevent premature convergence

else if(Rsucc
1 < Rsucc

2 /3)

CR=0.5CR; // search wider area

}
}

}

Fig. 6. The pseudo-code of DE with local sampling operation where
ξk=u(−

√
3/m,

√
3/m).

generation model improves efficiency because the model
can use newer information than the discrete model.

3) Reflecting back out-of-bound solutions [13] is adopted.
In order to keep bound constraints, an operation to move
a point outside of the search space S into the inside
of S is required. There are some ways to realize the
movement: generating solutions again, cutting off the
solutions on the boundary, and reflecting points back to
the inside of the boundary [14]. In this study, reflecting



back is used:

xij =


li + (li − xij)−

⌊
li−xij

ui−li

⌋
(ui − li) (xij < li)

ui − (xij − ui) +

⌊
xij−ui

ui−li

⌋
(ui − li) (xij > ui)

xij (otherwise)
(12)

where bzc is the maximum integer smaller than or equal
to z. This operation is applied when a new point is
generated by DE operations.

V. SOLVING OPTIMIZATION PROBLEMS

In this paper, well-known thirteen benchmark problems are
solved.

A. Test Problems and Experimental Conditions

The 13 scalable benchmark functions are shown in Table I
[15]. All functions have an optimal value 0. Some characteris-
tics are briefly summarized as follows: Functions f1 to f4 are
continuous unimodal functions. The function f5 is Rosenbrock
function which is unimodal for 2- and 3-dimensions but may
have multiple minima in high dimension cases [16]. The
function f6 is a discontinuous step function, and f7 is a noisy
quartic function. Functions f8 to f13 are multimodal functions
and the number of their local minima increases exponentially
with the problem dimension [17].

Independent 30 runs are performed for 13 problems. The
dimension of problems is 40 (D=40). Each run stops when
a near optimal solution, which has equivalent objective value
to the optimal solution, is found. If any near optimal solution
cannot be found within the maximum number of evaluations
FEmax, the run is considered as a failure run. In this study,
when the difference between the best objective value and the
optimal value becomes less than 10−7, the run stops. In f7, it
is difficult to find the good objective value, because a random
noise is added. It is assumed that the optimal value of f7 is
10−2 in this experiment. The maximum number of evaluations
FEmax is D × 105 (4,000,000).

B. Experimental Results on Standard DEs

Table II shows the experimental results on some standard
DEs: DE/rand/1/exp without and with the continuous gen-
eration model using F=0.7 and N=1.5D(60), DE/rand/1/bin
using F=0.7 and N=1.5D(60) or 3D(120), and DE/rand/1/bin
using F=0.5 and N=3D(120) or 5D(200) where CR=0.9.

The mean number of FEs until finding a near optimal value
and their standard deviation are shown in the top row for each
function. Also, the ratio of the mean number of FEs relative to
that of the DE/rand/1/exp without the continuous generation
model is shown in the bottom row and in parentheses and
the number of failure runs in which any near optimal solution
cannot be found is shown in brackets. The best result among
algorithms is highlighted using bold face fonts.

DE/rand1/1/exp can find near optimal solutions in all prob-
lems. On the contrary, DE/rand/1/bin cannot find any near
optimal solutions in f9, and sometimes cannot find near
optimal solutions in f3, f4, and f8. DE/rand/1/exp with the

TABLE I
TEST FUNCTIONS OF DIMENSION D. THESE ARE SPHERE, SCHWEFEL
2.22, SCHWEFEL 1.2, SCHWEFEL 2.21, ROSENBROCK, STEP, NOISY

QUARTIC, SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK, AND TWO
PENALIZED FUNCTIONS, RESPECTIVELY [18]

Test functions Bound constraints

f1(x) =
∑D

i=1
x2
i [−100, 100]D

f2(x) =
∑D

i=1
|xi|+

∏D

i=1
|xi| [−10, 10]D

f3(x) =
∑D

i=1

(∑i

j=1
xj

)2

[−100, 100]D

f4(x) = maxi{|xi|} [−100, 100]D

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
[−30, 30]D

f6(x) =
∑D

i=1
bxi + 0.5c2 [−100, 100]D

f7(x) =
∑D

i=1
ix4

i + rand[0, 1) [−1.28, 1.28]D

f8(x) =
∑D

i=1
−xi sin

√
|xi|

+D · 418.98288727243369
[−500, 500]D

f9(x) =
∑D

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]D

f10(x) = −20 exp

(
−0.2

√
1
D

∑D

i=1
x2
i

)
− exp

(
1
D

∑D

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32]D

f11(x) =
1

4000

∑D

i=1
x2
i −

∏D

i=1
cos

(
xi√
i

)
+ 1 [−600, 600]D

f12(x) = π
D
[10 sin2(πy1) +

∑D−1

i=1
(yi − 1)2

{1+ 10 sin2(πyi+1)}+(yD − 1)2]

+
∑D

i=1
u(xi, 10, 100, 4)

where yi = 1+ 1
4
(xi +1) and u(xi, a, k,m) ={

k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < −a

[−50, 50]D

f13(x) = 0.1[sin2(3πx1)+
∑D−1

i=1
(xi−1)2

{1 + sin2(3πxi+1)} + (xD − 1)2

{1 + sin2(2πxD)}] +
∑D

i=1
u(xi, 5, 100, 4)

[−50, 50]D

continuous generation model can find near optimal solutions
faster than DE/rand/1/exp without the model in all problems.
Therefore, from the viewpoint of stability and efficiency, it
is thought that DE/rand/1/exp with the model using F=0.7
and CR=0.9 is the best standard DE to solve these problems.
These settings showed very good and stable performance in
constrained optimization [19].

C. Experimental Results on the Proposed Method

The efficiency of two algorithms, DE (standard DE with
continuous generation model) and DE with local sampling
operation with varying the maximum local sampling rate
(LSRmax) in 0.1, 0.2, 0.3, 0.4 and 0.5 are compared. The
parameters are: exponential crossover, F = 0.7, CR = 0.9,
population size N=1.5D(60).

Table III shows the experimental results. The ratio of the
mean number of FEs relative to that of the standard DE is
shown in the bottom row and in parentheses. The best result



TABLE II
EXPERIMENTAL RESULTS ON STANDARD DES. MEAN VALUE ± STANDARD DEVIATION AND RATIO OF THE MEAN VALUE RELATIVE TO THAT OF THE

DE/RAND/1/EXP IN 30 RUNS ARE SHOWN

exp,N=60,F=0.7 exp,N=60,F=0.7,cont. bin,N=60,F=0.7 bin,N=120,F=0.7 bin,N=120,F=0.5 bin,N=200,F=0.5
f1 120687.6 ± 1221.2 118810.9 ± 1124.8 273600.9 ± 7420.5 1234419.5 ± 37838.9 164949.2 ± 4609.7 368089.7 ± 7373.5

(1.000) (0.984) (2.267) (10.228) (1.367) (3.050)
f2 171661.1 ± 1220.2 168780.6 ± 1431.4 445419.2 ± 12487.9 2095869.6 ± 66035.0 274991.9 ± 4572.9 624598.6 ± 10869.0

(1.000) (0.983) (2.595) (12.209) (1.602) (3.639)
f3 1018658.6 ± 15166.7 1013391.8 ± 15147.8 1513985.2 ± 69486.2 —– 989561.6 ± 32844.7 2326449.9 ± 60224.8

(1.000) (0.995) (1.486) (—–)[30] (0.971) (2.284)
f4 1067726.3 ± 9962.8 1062459.0 ± 10551.5 3719822.4 ± 272990.9 —– —– 1518417.2 ± 572038.5

(1.000) (0.995) (3.484)[21] (—–)[30] (—–)[30] (1.422)[2]
f5 394404.4 ± 6095.7 385424.9 ± 5781.6 1015989.5 ± 32078.1 3509049.3 ± 67394.5 778516.4 ± 20022.7 1325423.5 ± 19040.6

(1.000) (0.977) (2.576) (8.897) (1.974) (3.361)
f6 48922.1 ± 933.9 48378.0 ± 1190.6 117252.9 ± 5938.6 515339.9 ± 20755.0 68150.6 ± 2835.2 151484.7 ± 4346.2

(1.000) (0.989) (2.397) (10.534) (1.393) (3.096)
f7 668549.4 ± 102128.1 637370.6 ± 129435.1 618519.4 ± 213603.8 2878214.3 ± 648200.9 285187.7 ± 70312.2 652842.2 ± 163166.7

(1.000) (0.953) (0.925) (4.305)[1] (0.427) (0.977)
f8 145271.6 ± 1931.0 143776.5 ± 2483.4 587550.0 ± 23764.9 2588009.5 ± 186355.9 437998.8 ± 64120.8 1138988.6 ± 264940.6

(1.000) (0.990) (4.044)[25] (17.815)[8] (3.015)[11] (7.840)
f9 260477.0 ± 6551.8 259316.9 ± 6198.4 —– —– —– —–

(1.000) (0.996) (—–)[30] (—–)[30] (—–)[30] (—–)[30]
f10 179986.9 ± 1541.5 177519.0 ± 1551.8 412877.4 ± 11872.2 1859080.6 ± 39810.4 249526.8 ± 4568.6 552932.2 ± 8150.8

(1.000) (0.986) (2.294) (10.329) (1.386) (3.072)
f11 127775.0 ± 4265.3 127422.2 ± 4366.1 280974.1 ± 7950.9 1257975.2 ± 35875.5 169502.7 ± 3213.2 375195.9 ± 6231.6

(1.000) (0.997) (2.199) (9.845) (1.327) (2.936)
f12 107053.5 ± 1373.2 106594.1 ± 1615.0 258240.5 ± 9767.1 1194020.1 ± 47682.5 151385.9 ± 4734.2 341041.5 ± 8906.5

(1.000) (0.996) (2.412) (11.153) (1.414) (3.186)
f13 115407.5 ± 1481.4 113853.3 ± 1156.7 278689.3 ± 11640.6 1263133.1 ± 37724.3 163955.0 ± 3572.6 364009.4 ± 7076.8

(1.000) (0.987) (2.415) (10.945) (1.421) (3.154)

TABLE III
EXPERIMENTAL RESULTS ON THE PROPOSED METHOD. MEAN VALUE ± STANDARD DEVIATION AND RATIO OF THE MEAN VALUE RELATIVE TO THAT OF

THE STANDARD DE IN 30 RUNS ARE SHOWN

DE,exp,N=60,F=0.7,cont. LSRmax =0.1 LSRmax =0.2 LSRmax =0.3 LSRmax =0.4 LSRmax =0.5
f1 118810.9 ± 1124.8 100972.8 ± 1559.2 86536.4 ± 1436.0 75447.5 ± 1207.6 66982.1 ± 1100.1 66663.0 ± 948.8

(1.000) (0.850) (0.728) (0.635) (0.564) (0.561)
f2 168780.6 ± 1431.4 128531.5 ± 919.1 126651.3 ± 1710.4 124648.1 ± 1153.8 124916.3 ± 1217.1 124700.6 ± 982.5

(1.000) (0.762) (0.750) (0.739) (0.740) (0.739)
f3 1013391.8 ± 15147.8 275779.2 ± 4446.3 173049.3 ± 5047.5 153441.8 ± 4777.3 153483.1 ± 3278.1 154720.0 ± 4523.8

(1.000) (0.272) (0.171) (0.151) (0.151) (0.153)
f4 1062459.0 ± 10551.5 783882.6 ± 17057.7 562021.4 ± 13479.1 565417.7 ± 12034.2 558065.8 ± 12404.9 559516.4 ± 13811.5

(1.000) (0.738) (0.529) (0.532) (0.525) (0.527)
f5 385424.9 ± 5781.6 329711.7 ± 6625.1 301176.7 ± 6522.3 285254.9 ± 7030.1 281899.0 ± 9921.7 280037.9 ± 9764.2

(1.000) (0.855) (0.781) (0.740) (0.731) (0.727)
f6 48378.0 ± 1190.6 42077.3 ± 1244.4 36727.7 ± 1292.8 31599.5 ± 873.5 27392.4 ± 1155.8 27425.8 ± 864.5

(1.000) (0.870) (0.759) (0.653) (0.566) (0.567)
f7 637370.6 ± 129435.1 300859.8 ± 71258.1 202957.3 ± 42308.6 137099.1 ± 30026.6 113842.0 ± 23450.0 111413.2 ± 34472.5

(1.000) (0.472) (0.318) (0.215) (0.179) (0.175)
f8 143776.5 ± 2483.4 98116.1 ± 1166.3 98015.0 ± 1165.1 98190.0 ± 1470.5 98392.6 ± 1694.1 98017.0 ± 1578.7

(1.000) (0.682) (0.682) (0.683) (0.684) (0.682)
f9 259316.9 ± 6198.4 119022.0 ± 1531.2 121793.8 ± 2032.2 121856.7 ± 2197.9 122356.6 ± 1831.0 121519.9 ± 1968.4

(1.000) (0.459) (0.470) (0.470) (0.472) (0.469)
f10 177519.0 ± 1551.8 151936.2 ± 1707.9 130632.8 ± 1357.7 113076.1 ± 1372.8 101621.9 ± 1473.8 102068.0 ± 1046.0

(1.000) (0.856) (0.736) (0.637) (0.572) (0.575)
f11 127422.2 ± 4366.1 109819.1 ± 6264.6 92179.6 ± 4865.7 80993.0 ± 5365.8 71416.1 ± 5190.2 70353.4 ± 2509.1

(1.000) (0.862) (0.723) (0.636) (0.560) (0.552)
f12 106594.1 ± 1615.0 93476.3 ± 2706.8 83297.2 ± 1833.6 72247.7 ± 1733.9 69112.7 ± 2431.6 68805.3 ± 1496.6

(1.000) (0.877) (0.781) (0.678) (0.648) (0.645)
f13 113853.3 ± 1156.7 98550.0 ± 1389.3 85755.3 ± 1402.5 74333.3 ± 1307.6 68831.4 ± 1775.5 68361.5 ± 1281.7

(1.000) (0.866) (0.753) (0.653) (0.605) (0.600)



among algorithms is highlighted using bold face fonts.
DE with the local sampling operation outperformed the

standard DE in all problems and in all settings of LSRmax.
The best value of LSRmax seems to be 0.5, because the
settings attained best results in 6 problems and second-best
results in 6 problems. DE with the operation of LSRmax = 0.5
can find near optimal solutions more than 5 times faster than
the standard DE in problems f3 and f7. It can solve the
problems in 50% to 60% FEs compared with the standard
DE for problems f1, f4, f6, f9, f10, f11 and f13. In other
problems, it can find near optimal solutions in 60% to 75%
FEs. It is shown that proposed method can solve 9 problems
very fast and 4 problems fast. Thus, it is thought that the
method is effective to various problems.

To determine the significance of the proposed method,
statistical analysis was performed using one-sided Welch’s t-
test for the mean FEs of the standard DE and that of the
proposed method with LSRmax being 0.1, 0.2, 0.3, 0.4 and
0.5. It is thought that the proposed method is significantly
better than the standard DE because p-values in all parameter
settings and all functions are less than 0.001.

Figures 7 to 15 show the change of best objective value
found over the number of FEs within 200,000 evaluations
without the graphs of f3 and f4, which are similar to that of
f1, and without the graphs of f12 and f13 which are similar
to that of f11. Apparently, proposed method can find better
objective values faster than the standard DE in all problems.

VI. CONCLUSION

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve nonlinear optimization
problems. In this study, we proposed the local sampling
operation to improve the efficiency and also stability of DE.
It was shown that the operation can reduce the number of
function evaluations for finding near optimal solutions more
than 40% in 9 problems out of 13 problems. Thus, it is thought
that DE with the local sampling operation is a very efficient
optimization algorithm compared with standard DEs.

The proposed method is scale-invariant but not completely
rotation-invariant because the ordinary crossover operation
is adopted probabilistically. In the future, we will design
completely rotation-invariant and scale-invariant operations.
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