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Abstract—Differential evolution (DE) is an evolutionary
algorithm and has been successfully applied to optimization
problems including non-linear, non-differentiable, non-convex
and multimodal functions. However, it is still difficult to solve
hard problems such as multimodal problems and problems
with ridge structures. In this study, we propose a new speciation
method ‘‘graph-based speciation” to keep the diversity of the
search points and realize the global search. Also, we utilize the
species-best strategy that can realize the global search using
speciation and the local search around the seeds of species.
It is expected that the efficiency and the robustness of DE
can be improved by using the strategy. The advantage of
the proposed method is shown by solving some benchmark
problems including multimodal problems and problems with
ridge structures.
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I. INTRODUCTION

Optimization problems, especially nonlinear optimization
problems, are very important and frequently appear in the
real world. There exist many studies on solving optimization
problems using evolutionary algorithms (EAs). Differential
evolution (DE) is an EA proposed by Storn and Price [1],
which is a stochastic direct search method using a popu-
lation or multiple search points. DE has been successfully
applied to optimization problems including non-linear, non-
differentiable, non-convex and multimodal functions [2], [3].
It has been shown that DE is a very fast and robust algorithm.

However, it is still difficult to solve hard problems such
as multimodal problems and problems with ridge structures.
In multimodal problems, search points might converge to a
local optimal solution. In problems with ridge structures,
search points will move along a narrow path, lost the
divergence and might be stopped at a solution that is not
optimal. In order to avoid these situations, a global search
should be realized by keeping the divergence of the search
points. On the other hand, a disadvantage of EAs is that
they need a large number of function evaluations before a
well acceptable solution can be found. Recently, the size
of optimization problems tends to become larger, and the
cost of function evaluations becomes higher. It is necessary
to develop more efficient optimization algorithms to reduce
the number of function evaluations. In order to improve the
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efficiency, a local search should be realized by exploring
an area near the best search points. Thus, it is important to
balance between the global search and the local search.

In this study, we propose a new speciation method “graph-
based speciation” to keep the diversity of the search points
and realize the global search. Also, we utilize the species-
best strategy [4], [5]. In DE, a mutant vector is generated
for each parent by using a base vector and one or more
difference vectors which are the difference between two
individuals. The parent and the mutant vector are recom-
bined by a crossover operation to generate a child, or a
trial vector. There are some strategies for selecting the base
vector: The best individual is used as the base vector in the
best strategy and a randomly selected individual is used in
the rand strategy. In the species-best strategy, a population is
divided into several species by speciation, and the seed of the
species to which the parent belongs is selected as the base
vector. The strategy can balance between the global search
using speciation and the local search around the seeds of
species. It is thought that the efficiency of the species-best
strategy is better than the rand strategy and the robustness
of the species-best strategy is better than the best strategy.
Thus, it is expected that the strategy improves the efficiency
and the robustness of the search.

The advantage of the proposed method is shown by
solving some benchmark problems including multimodal
problems and problems with ridge structures.

In Section II, some studies on speciation are briefly
reviewed. In Section III, the graph-based speciation is pro-
posed. DE and DE with speciation are described in Section
IV. In Section V, experimental results on some problems are
shown. Finally, conclusions are described in Section VI.

II. SPECIATION

Speciation is the evolutionary process to form new bio-
logical species by the development of one species into two
or more genetically distinct ones. The idea of speciation
is mainly used for multimodal optimization where multiple
optimal or suboptimal solutions are obtained simultaneously
in one run. Each species evolves to find an optimal or
suboptimal solution. There exist some types of research
using speciation in DE [6] as follows.



Radius-based speciation: A population is sorted in in-
creasing objective value order, first. Then, the best individual
in the sorted population becomes a new species seed. The
population members that exist within the specified radius
from the seed are assigned to the species, and the members
are deleted from the population. This process is repeated
until the population becomes empty [4], [7], [8].

In this category, it is difficult to select a proper radius,
which depends on problems to be optimization and also the
search process in the optimization.

Clustering-based speciation: A population is divided
into several clusters using a clustering algorithm such as k-
means clustering [9] or fuzzy c-means clustering [5], [10].
Each cluster corresponds to a species. An individual that has
the best objective value in the species is selected as the seed.

In this category, it is difficult to select a proper number
of clusters, which depends on problems and also the search
process.

In this study, the graph-based speciation using competitive
Hebbian rules is proposed not to solve multimodal optimiza-
tion but to solve usual optimization for finding one optimal
solution and improving the efficiency and the robustness of
DE. In the approach, the number of species is dynamically
adjusted depending on the function landscape in the search
process such as unimodal, multimodal or ridge structures.

III. GRAPH-BASED SPECIATION BY
COMPETITIVE HEBBIAN RULES

A. Delaunay diagram

When N vertices V = {x1, @2, -+, xy} exist in a metric
space S, S can be decomposed into N regions, or Voronoi
cells R(x;), which are the sets of all points in .S whose
distance to x; is not greater than their distance to the other
vertices. The Voronoi cells can be defined as follows:

R(xz;) = {x € S|d(x,z;) < d(x,x;),Vj #i} (1)

where d is a distance function on S.

In Delaunay diagram, two vertices x; and x; are con-
nected when the regions R(x;) and R(z;) adjoin each other.
Delaunay diagram is the geometric dual of the Voronoi
diagram. Proximity graphs such as nearest neighborhood
graph, relative neighborhood graph and Gabriel graph are
the subgraphs of Delaunay diagram.

B. Competitive Hebbian rules

Martinetz et al. [11] proposed a topology representing
neural networks which is a subgraph of the Delaunay
diagram and is generated by competitive Hebbian rules as
follows:

1) Set all connection strengths C;; = 0.
2) Present an input pattern & € S with probability P(x).

3) Determine the nearest vertex to «, x;; and the second
nearest vertex ax;o as follows:

d(x, ;1)
d(ZB, wiQ)

dx,xz;),Vj=1,2,---,N (2)
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4) Strengthen the connection between x;; and x;5 ac-
cording to competitive Hebbian rules. If Cj; ;0 = 0,
set (1,42 > 0, that is, connect x;; and ;2.

5) Go back to 2) until termination condition is satisfied.
A subgraph of Delaunay diagram can be generated by
the algorithm. If the number of input patterns M — oo,
Delaunay diagram can be generated.

C. Speciation using proximity graph
In graph-based speciation using proximity graph, the
species relation of two points is defined by whether the edge
between the points exists or not. Species are formed by a
point and the connected points to the points. The seed of
the species is defined as follows:
1) Create a proximity graph using search points.
2) For each point x;,i =1,2,---, N,
(a) Obtain the points that are connected to x;.
(b) Form species from x; and the points. The best point
among the species becomes the seed of the species.
seed(x;) = arg s %1rincu>0} f(x) 3)
IV. SPECIATION-BASED DIFFERENTIAL EVOLUTION
USING GRAPHS

A. Optimization Problems

In this study, the following optimization problem (P) with
lower bound and upper bound constraints will be discussed.

f(z) “4)
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(P) minimize
subject to

where = (21,2, -+, 2,) is an n dimensional vector and
f () is an objective function. The function f is a nonlinear
real-valued function. Values /; and u; are the lower bound
and the upper bound of z;, respectively. Let the search space
in which every point satisfies the lower and upper bound
constraints be denoted by S.

B. Differential Evolution

In DE, initial individuals are randomly generated within
the search space and form an initial population. Each indi-
vidual contains n genes as decision variables or a decision
vector. At each generation or iteration, all individuals are
selected as parents. Each parent is processed as follows:
The mutation process begins by choosing 1 + 2 num
individuals from all individuals except for the parent in
the processing. The first individual is a base vector. All
subsequent individuals are paired to create num difference
vectors. The difference vectors are scaled by a scaling



factor F' and added to the base vector. The resulting vector
is then recombined with the parent. The probability of
recombination at an element is controlled by the crossover
rate C'R. This crossover process produces a trial vector.
Finally, for survivor selection, the trial vector is accepted
for the next generation if the trial vector is better than the
parent.

Some variants of DE such as DE/best/1/bin and
DE/rand/1/exp have been proposed. The variants are clas-
sified using the notation DE/base/num/cross. “base” indi-
cates the method of selecting a base vector. For example,
DE/rand/num/cross selects the base vector at random from
the population. DE/best/num/cross selects the best indi-
vidual in the population. “num” indicates the number of
difference vectors used to perturb the base vector. “cross”
indicates the crossover mechanism used to create a trial
vector or a child. For example, DE/base/num/bin shows
that the crossover is controlled by the binomial crossover
using the constant crossover rate. DE/base/num/exp shows
that the crossover is controlled by the two-point crossover
using exponentially decreasing the crossover rate.

C. Species-based DE with Graph

Some modifications to standard DE are applied for pro-
posed method as follows:
1) Species-best strategy for mutation is adopted. The seed
of the individual is selected as a base vector.

x' = Lseed(x;) + F(wpz - Scp?,) ®)

where @’ is a mutant vector, seed(x;) is the seed of
x;, p2 and p3 are random numbers.

2) Continuous generation model is adopted. In this study,
when the child is better than the parent, the parent is
immediately replaced by the child.

The pseudo-code of SDE-G/species-best/1/exp using com-

petitive Hebbian rules (CHR) is shown in Figure 1.

V. NUMERICAL EXPERIMENTS
A. Test Problems

In this section, benchmark problems including sphere
function (f;), Rosenbrock function (f5), ill-scaled Rosen-
brock function (f3) and Rastrigin function (f4) are solved.
These functions have various surfaces such as unimodal
surface in fi, ridge structure in f5 and f3, and multimodal
bumpy surfaces. The function definitions and their search
spaces, where n is the dimension of the decision vector,
are shown in Table I. Table II shows the features of the
functions.

All functions are optimized with the dimension of deci-
sion vector n = 30. Experimental conditions for SDE-G and
DE are as follows: Population size is N = 50. Scaling factor
and crossover rate are generated for each individual.

F = 0.7+ N(0,0.1%),F €[0.5,0.9] (6)
CR = 0.9+ N(0,0.1%),CR € [0.8,1] (7

SDE-G/CHR/species-best/1/exp ()
{
P=N individuals {x;} generated randomly in S;
for (t=1; termination condition is false; t++) {
Obtain {Cj;} using competitive Hebbian rules;
Obtain {seed(x;)} by Speciation using {Cj;};
for (i=1; i < N; i++) {
p1=seed(x;);
@p,=Randomly selected from P (p2 &€ {i,p1});
@p,=Randomly selected from P (p3 & {i,p1,p2});
achild_g
j=select randomly from [1,n];
k=1;
do {
x;:‘hlld:xplyj+F(xP2;j —Tps.5)i
3= +1)%n;
k++;
} while(k<n && u(0,1) < CR);
L (f(z) < f(ws))
@, —child;
}
}

}

Figure 1. The pseudo-code of SDE-G/CHR, (0, 1) is a uniform random
number in [0, 1].

Table 1
BENCHMARK FUNCTIONS

Func. Definition Optimum
7

f1 E x2,-5.12 < x; < 5.12 (0,0,---,0)
i=1
n

fo | D {1001 = 3} + (@i — 1)) (1,1,---,1)

1=2
—2.048 < z; < 2.048

o | D 100G = (0" + Gz = 1} | (14 )

i=2
—2.048/i < x; < 2.048/i

fa | 10n+ E {z? — 10 cos(2ma;)} (0,0,---,0)

i=1
—5.12 < z; < 5.12

The input patterns in competitive Hebbian rules are gen-
erated as the middle of random selected two points in the
population, and the number of patterns M = 5N.

In this paper, 30 independent runs are performed. Each run
stops when a near optimal solution is found. In this paper, the
difference between the objective value of the near optimal
solution and the optimal value is less than 10~7. Algorithms
DE/rand (fixed parameters of F' = 0.7, CR = 0.9), DE/rand

Table II
FEATURES OF TEST PROBLEMS

Function | modality surface dependency of variables ill-scale
f1 unimodal smooth — —
fa unimodal  steep strong —
f3 unimodal  steep strong strong
fa multimodal bumpy — —




(variable parameters according to Eq. (6) and (7)) and SDE-
G/species-best are compared.

B. Experimental Results

Table III shows the experimental results. The mean num-
ber of FEs until finding a near optimal value and their stan-
dard deviation are shown in the top row for each function.
Also, the ratio of the mean number of FEs relative to that
of the DE with fixed parameters is shown in the bottom
row using parentheses. SDE-G can solve the problems fo
and f3 within 30% FEs compared with the DE with fixed
parameters and in about 60% FEs compared with the DE
with variable parameters, solve the problems f; in about
50% FEs, and solve the problem fy in about 80% FEs. This,
SDE-G can reduce a large number of FEs compared with
standard DEs.

Table IIT
RESULTS OF DE AND SDE-G OVER 30 INDEPENDENT RUNS
DE fixed params. | DE variable params. SDE-G
f1 57899.2 + 1281.1 62902.5 + 845.8 | 31091.3 + 1278.8
(1.000) (1.086) (0.537)
f21561565.7 £ 17282.9 [ 309062.5 + 17773.1 | 127584.9 + 5273.2
(1.000) (0.550) (0.227)
f31558257.7 £ 16191.2 | 307098.4 + 16518.4 | 164333.8 £+ 9192.4
(1.000) (0.550) (0.294)
fa| 160205.0 & 4865.9 | 163358.9 £ 3816.8 | 129007.1 + 4897.2
(1.000) (1.020) (0.805)

Figure 2 shows the number of unique seeds that shows the
diversity of the search. In f7, the diversity is almost constant.
However, in f> and f3 with ridge structures the diversity is
high. Also, in f; of multimodal problem the diversity is high
at the middle search stage (and after finding the optimum
and converging to it). It is shown that graph-based speciation
can adjust the number of unique seeds and the diversity.
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Figure 2. The change of the number of unique seeds over generations

VI. CONCLUSION

We have proposed SDE-G/CHR that utilizes graph-based
speciation using competitive Hebbian rules. It is shown that
SDE-G/CHR can find optimal solutions stably in unimodal,

multimodal problems and problems with ridge structures.
Also, it is shown that SDE-G/CHR can reduce a lot of
function evaluations compared with DE. We plan to apply
the proposed method to constrained optimization problems.
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