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Abstract. Multimodal optimization is a very difficult task to search for all opti-
mal solutions at once in optimization problems with multiple optimal solutions.
Speciation using a proximity graph has been proposed to solve multimodal opti-
mization problems. Gabriel graph (GG) and relative neighborhood graph (RNG)
are often used as the proximity graph. The search efficiency is good when GG is
used, but the discovery rate of the optimum solutions is lower than when RNG is
used. In this study, we propose a new proximity graph with a parameter β named
“β relaxed relative neighborhood graph” (βRNG) that can be generated relatively
fast and has intermediate properties between GG (β=1) and RNG (β=2). Also,
βRNG is adopted in SPSO-G (Speciation-based Particle Swarm Optimization us-
ing Graphs) for graph-based speciation. The performance of the proposed method
is shown by optimizing well-known benchmark problems for “CEC’2013 special
session and competition on niching methods for multimodal function optimiza-
tion”.

Keywords: multimodal optimization, particle swarm optimization, speciation,
graph-based speciation, proximity graph

1 Introduction

There exist many studies on solving optimization problems using population-based op-
timization algorithms (POAs) in which a population or multiple search points are used
to search for an optimal solution. Swarm intelligence algorithms inspired by collective
animal behavior such as particle swarm optimization (PSO) [1] and ant colony opti-
mization are POAs. In general, POAs are stochastic direct search methods, which only
need function values to be optimized, and are easy to implement. For this reason, POAs
have been successfully applied to various optimization problems.

In industrial design problems, it is sometimes desirable to find as many optimal so-
lutions as possible including suboptimal solutions instead of finding only one optimal
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solution. After finding various solutions, one can choose a solution to be adopted from
other perspectives such as the stability of the solution in the neighborhood. An optimiza-
tion problem with multiple optimal solutions is called multimodal optimization problem
(MMOP). When trying to solve the MMOPs with POAs, the diversity of search points
decreases as the search progresses generally and the search points converge near a cer-
tain solution. Therefore, MMOPs are very difficult to solve and researches on MMOPs
are actively conducted to find multiple solutions in one trial.

In order to obtain multiple solutions, it is required that the search points are divided
into several subpopulations, each subpopulation shares the search space, and the search
is performed by each subpopulation with maintaining diversity. This technique is called
niching or speciation [2, 3]. Representative methods include: sharing, where the fitness
of a search point is shared by search points in a certain range; clearing, where the size of
a subpopulation is limited by removing some points which have lower fitness in the sub-
population; crowding, which maintains diversity by replacing a newly generated point
with the most similar search point during the survivor selection; speciation according
to the radius of the subpopulation [4, 5]; speciation using a clustering method [6]; and
speciation using a proximity graph [7, 8].

In this study, speciation using a proximity graph, or graph-based speciation is inves-
tigated. Gabriel Graph (GG), Relative Neighborhood Graph (RNG), and β skeleton are
used as the proximity graph for speciation. When GG is used for speciation, the con-
vergence to optimal solutions is fast, but especially in high-dimensional problems, GG
is almost same as a perfect graph at the beginning of the search and the search points
cannot be divided into subpopulations. When RNG is used, the search points can be
divided into subpopulations, but the convergence to optimal solutions is slow. In case
of β skeleton, the number of search points is limited by high computational cost and it
is difficult to find many optimal solutions.

We propose β-relaxed RNG (βRNG) that can realize an intermediate graph between
GG and RNG, and has the same order of time complexity for graph generation as GG
and RNG. By specifying β, βRNG can relax the neighborhood condition of RNG and
can generate a graph close to GG. In this study, PSO with graph-based speciation us-
ing βRNG(SPSO-G/βRNG) is proposed. βRNG is set to RNG at the beginning of the
search to generate many subpopulations and gradually changed to GG at the end of
the search to improve the convergence. The performance of the proposed method is
shown by optimizing well-known benchmark problems for “CEC’2013 special session
and competition on niching methods for multimodal function optimization” [9].

In Section 2, proximity graphs are explained and βRNG is proposed. Speciation
methods are explained in Section 3. In section 4, PSO is briefly explained and SPSO-
G/βRNG is proposed. The experimental results are shown in Section 5. Finally, conclu-
sions are described in Section 6.

2 Proximity Graphs

2.1 Definition

Graph G can be described G(V,E) where V is the set of vertices and E is the set of
edges. A proximity graph is a graph in which two vertices are connected by an edge
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if and only if the vertices satisfy particular geometric requirements. When two vertices
vi, vj ∈ V satisfy a neighborhood condition, the vertices have an edge (vi, vj) ∈ E.
Nearest neighborhood graph, Gabriel graph [10], relative neighborhood graph [11], β
skeleton [12] are proposed as proximity graphs.

In Gabriel graph (GG), two vertices vi and vj satisfy the neighborhood condition
when the hypersphere, of which diameter is the line between the vertices, does not have
any other vertex inside of the hypersphere. GG can be defined as follows:

(vi, vj) ∈ E ⇐⇒ HS

(
vi + vj

2
,
||vi − vj ||

2

)
∩ V = ϕ (1)

where HS(c, r) shows the hypersphere with radius r centered at c.

HS(c, r) = {x | ||x− c|| < r} (2)

If and only if any vertex vk does not exists in the hypersphere, the vertices are connected
by an edge.

In relative neighborhood graph (RNG), two vertices vi and vj satisfy the neigh-
borhood condition when the intersection of two hyperspheres with radius ||vi − vj ||
centered at vi and vj does not have any other vertices inside of the intersection. The
intersection is called as a lune. RNG can be defined as follows:

(vi, vj) ∈ E ⇐⇒ HS(vi, ||vi − vj ||) ∩HS(vj , ||vi − vj ||) ∩ V = ϕ (3)

RNG is a subgraph of GG.

2.2 β-relaxed Relative Neighborhood Graph

We propose a new proximity graph with a parameter β named β-relaxed RNG (βRNG).
The neighborhood condition for βRNG is that no other vertices are included in the
intersection of the RNG lune and the hypersphere specified by the parameter β. For a
pair of vertices vi and vj , a hypersphere centered at the midpoint of the two vertices is
defined so that a point u on the hypersphere satisfies the following equation:

β =
||vi − u||2 + ||vj − u||2

||vi − vj ||2
, 1 ≤ β ≤ 2 (4)

This can be transformed as follows:

||vi − u||2 + ||vj − u||2 = β||vi − vj ||2 (5)

2||vi + vj
2

− u||2 + 1

2
||vi − vj ||2 = β||vi − vj ||2 (6)

||u− vi + vj
2
||2 =

(√
2β − 1

2
||vi − vj ||

)2

(7)

Therefore, βRNG(V,E) can be defined as follows:

(vi, vj) ∈ E ⇐⇒ (8)

HS(vi, ||vi − vj ||) ∩HS(vj , ||vi − vj ||) ∩HS
(
vi + vj

2
,

√
2β − 1

2
||vi − vj ||

)
∩ V = ϕ

196



Figure 1 shows an example of βRNG, where the shaded region is the conditional region
when β=1.5.

���

���

�����

Fig. 1. Neighborhood condition for βRNG of β = 1.5

βRNG is a subgraph of GG and a supergraph of RNG. Similar to the β skeleton,
βRNG of β=1 is GG and βRNG of β=2 is RNG.

The neighborhood condition of two vertices in βRNG can be determined as follows:

– If there exists no vertex vk which satisfies d(vi, vk) < d(vi, vj) and d(vj , vk) <
d(vi, vj) and ||vi − vk||2 + ||vj − vk||2 < β||vi − vj ||2, vi and vj is connected.

3 Speciation

Speciation is biologically an evolutionary process to form new biological species by
the development of one species into two or more genetically distinct ones. The idea
of speciation has been mainly used for multimodal optimization to capture multiple
optimal or suboptimal solutions simultaneously. Each species evolves to find an optimal
or a suboptimal solution.

There exist some types of speciation methods [13] such as radius-based speciation.
nearest neighbor-based speciation and graph-based speciation. In the following, a popu-
lation of search points, or individuals is described as P = {xi | i = 1, 2, · · · , N} where
N is the population size and P is the target of speciation. The seed of a species to which
an individual xi belongs is denoted by xseed(xi).

3.1 Radius-Based Speciation

In radius-based speciation, the neighborhood condition is defined by species radius
R [5, 14, 15]. A species is composed of a species seed and individuals inside the hy-
persphere of radius R centered at the seed. Given individuals and an objective value for
each individual, the algorithm for radius-based speciation is described as follows:

1. A population is sorted according to the objective values in the order of best objec-
tive value first.

2. The best individual xb in the sorted population becomes a new species seed (seed(xb) =
b). The population members that exist within the specified radius from the seed are
assigned to the species (seed(xi) = b).
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3. The members of the species including the seed are deleted from the population.
4. Go back to 2 until the population becomes empty.

In this speciation, it is difficult to select a proper radius, which depends on problems
to be optimization and also the search process in the optimization.

3.2 Graph-Based Speciation

In graph-based speciation, a species is composed of an individual and its adjacent indi-
viduals that are connected to the individual by edges in a graph. In radius-based speci-
ation, a species is formed by the best individual and the individuals within the species
radius, where both individuals are selected from individuals whose species has not been
determined. Similarly, in graph-based speciation, a species can be formed by the best
individual and the individuals adjacent to the best individual. In this case, for example,
if the second best individual is adjacent to the best individual, the second best individ-
ual cannot become a seed. In this study, the following speciation is adopted in order to
avoid such situation.

1. A proximity graph is generated and the set of edges E is determined.
2. For each individual xi, i = 1, 2, · · · , N ,

(1) The adjacent individuals of xi are obtained usingE. xi and the adjacent individuals
form a species.

(2) The best individual in each species is the seed of the species. In case of function
maximization, the seed can be defined as follows:

seed(xi) = argmax
h∈H

f(xh),H = {h|h = i or (xi,xh) ∈ E} (9)

In this study, a modified version of this type of graph-based speciation is adopted.

4 Multimodal Optimization Using Graph-based Speciation

4.1 Optimization Problems

An function maximization problem with lower bound and upper bound constraints can
be described as follows:

maximize f(x)
subject to li ≤ xi ≤ ui, i = 1, . . . , D,

(10)

where x = (x1, x2, · · · , xD) is a D dimensional vector and f(x) is an objective func-
tion. The function f is a nonlinear real-valued function. Values li and ui are the lower
bound and the upper bound of xi, respectively. The region that satisfies the upper and
lower bound constraints is called search space.
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4.2 Particle Swarm Optimization

PSO [1, 16] is an optimization method based on swarm intelligence which is inspired
by the movement of a bird flock. PSO imitates the movement to solve optimization
problems and is considered as a population-based stochastic search method or POA.

Searching procedures by PSO can be described as follows: A group of agents maxi-
mizes the objective function f . At any time t, each agent i knows its current position xt

i

and velocity vt
i (i = 1, 2, · · · , N). It also remembers its personal best visited position

found so far x∗
i and the objective value pbesti.

x∗
i = arg max

τ=0,1,···,t
f(xτ

i ), pbesti = f(x∗
i ) (11)

Two models, gbest model and lbest model have been proposed [17, 18]. In the gbest
model, every agent knows the best visited position x∗

G in all agents and its objective
value gbest. In the lbest model, each agent knows the best visited position x∗

l in the
neighbors and its objective value lbesti as follows, where the neighbors are defined by
a topology such as ring, mesh, star and tree topology.

x∗
l = arg max

k∈Ni

f(x∗
k), lbesti = f(x∗

l ) (12)

where Ni is the set of neighbor agents to i. In the gbest model, l = G, Ni is all agents
and lbesti is gbest. The velocity of the agent i at time t+ 1 is defined as follows:

vt+1
ij = wvtij + c1 rand1ij (x

∗
ij − xtij) + c2 rand2ij (x

∗
lj − xtij) (13)

where w is an inertia weight and randkij is a uniform random number in [0, 1] which
is generated in each dimension. c1 is a cognitive parameter and c2 is a social pa-
rameter which represent the weight of the movement to the personal best and the
group/neighbors best, respectively. Usually, the maximum velocity V max

j is specified
to avoid too large velocity and |vij | ≤ V max

j is satisfied.
The position of the agent i at time t+ 1 is given as follows:

xt+1
i = xt

i + vt+1
i (14)

The linearly decreasing inertia weight (LDIW) method [19] is one of well-known
strategies, where w is linearly decreasing with the number of iterations as follows:

w = wmax − (wmax − wmin)
t

Tmax
(15)

wherewmax andwmin are the maximum weight and the minimum weight forw, respec-
tively. Tmax is the maximum number of iterations. Recommended values arewmax=0.9,
wmin=0.4, c1=c2=2 and V max

j =uj .
Also, several methods for inertia weight have been studied [20]. In this study, con-

stant inertia weight of w = 0.4 and random inertia weight of w = 0.4 + 0.5u(0, 1) are
used with c1=c2=2, where u(a, b) is a uniform random number in [a, b].
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4.3 SPSO-G/βRNG

In SPSO-G/βRNG, graph-based speciation using “personal best positions”, or P={x∗
i }

is adopted because the personal best positions have more accurate information about
local optimal solutions than agent positions.

Some modifications to standard PSO are applied for proposed method as follows:

– If an edge is too long, it is likely to connect vertices belonging to different species.
Edges that satisfy the following equation are removed in order to cut about 10%
long edges.

d > d̄+ 1.281552σ (16)

where d is the length of an edge, and d̄ and σ are average and standard deviation of
all lengths of edges, respectively.

– If seed(x∗
i ) = i, x∗

i is the best position in a species and is a candidate of an optimal
solution. Also, if seed(x∗

i ) = l and seed(x∗
l ) = l, x∗

i is adjacent to the candidate.
In these cases, the inertia weight w is 0.4 in order to search in a small area near the
candidate. In other cases, the inertia weight w is 0.4+0.5u(0, 1) in order to search
in wide areas.

– A mutation operation similar to DE/current-to/1/bin strategy of DE is utilized as
follows:

mi = x∗t
i + F (x∗t

r2 − x∗t
r3) (17)

xt+1
ij =

{
mij , if j = jrand or u(0, 1) < CR
xtij , otherwise

(18)

vt+1
ij = u(0, 1)(x∗tij − xt+1

ij ) (19)

The first equation defines current-to mutation strategy where r2 and r3 are random
numbers in {1, 2, · · · , N} excluding i and are different from each other, and F is a
scaling factor. A mutant vector mi is generated using personal best positions. The
second equation defines binomial crossover where jrand is a randomly selected
integer in [1, D] (D is the number of dimensions), and CR is a crossover rate.
At least one element of the mutant vector is inherited by the new position using
jrand. The velocity is reset to a randomized direction from xt+1

i to the personal
best position. The mutation is applied with probability Pm = 0.2 with F=1 and
CR=0.1 based on some preliminary experiments.

– When a new position is out of the search space, the position is repaired to be the
upper or lower bound. Also, the velocity is changed to − 1

2v
t+1
ij so that the bounds

are not violated again.
– An archive is adopted to hold many solutions. The archive is initially filled by initial

agents. When an agent moved and the new position is generated, the new position is
stored if the number of the solutions in the archive is less than the archive size NA.
Otherwise the position is checked whether it may be stored in the archive or not. If
the position is better than the closest solution in the archive, the closest solution is
replaced with the new position.

The algorithm of SPSO-G/βRNGis as follows:
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1. β is specified for βRNG. The number of agents N and the archive size NA are
specified. Usually, NA=N .

2. Initialization: Initial agent i with a position xi and a velocity vi is generated. xi

is randomly generated in the search space where each element xij is a uniform
random number in [lj , uj ]. vi is randomly generated where each element vij is a
random number in [−Vmaxj

, Vmaxj
] and Vmaxj

= 1
2 (uj − lj). x

∗
i =xi.

3. Termination: If the number of function evaluations exceeds the maximum number
of function evaluations FEmax, the algorithm is terminated.

4. Speciation: If dynamic control of graph is adopted, β is updated, which is explained
later. βRNG is created using {x∗

i }. Long edges are removed according to Eq.(16).
seed(x∗

i ) is determined according to the graph-based speciation algorithm.
5. Update of agents: Mainly, the agents are updated by the movement. If xi is near a

candidate of optimal solution, namely seed(x∗
i )=i or seed(x∗

seed(x∗
i )
) = seed(x∗

i ),
w=0.4. Otherwise w=0.4+0.5u(0, 1). The new velocity of each agent i are ob-
tained according to Eq.(13). The each element of the new velocity is truncated
in [−Vmaxj

, Vmaxj
]. The new position is obtained according to Eq.(14). When xi

is not near the candidate, the position is updated by the DE strategy according to
Eqs. (17) – (19) with probability Pm. If the position is out of the search space, the
position and the velocity is repaired.

6. Update of personal best: If the objective value of the new position f(xt+1
i ) is better

than that of the personal best position f(x∗
i ), the personal best position is replaced

with the new position.
7. Update of the archive: The archive is updated by newly generated positions.
8. Go back to 3.

5 Numerical Experiments

5.1 Test Problems and performance evaluation

In this study, the benchmark problems for “CEC’2013 special session and competition
on niching methods for multimodal function optimization” are optimized. Brief expla-
nation of 20 benchmark problems are shown in Table 1. The problem number (Prob.),
the function name with the number of dimensions, the optimal value, the number of
global optima, and function description is described for each problem.

In order to evaluate the performance, the following measures are used [9]:
Peak ratio (PR): Given a maximum number of function evaluations and an accuracy

level, PR measures the average ratio of all known global optima found in all runs. If all
global optima are found in all runs, PR is 1.

PR =

∑NR
i=1NPFi

NKP ∗NR
(20)

whereNR is the number of runs,NPFi is the number of global optima found in the end
of i-th run, NKP is the number of known global optima. When the difference between
the best objective value found and the global optimum value is less than or equal to
the accuracy level, it is considered to have found a global optima. Five accuracy levels
1e-1, 1e-2, 1e-3, 1e-4 and 1e-5 are adopted.
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Table 1. Benchmark functions

Prob. Function Optimal value #global optima Function description
1 F1 (1D) 200.0 2 Five-Uneven-Peak Trap
2 F2 (1D) 1.0 5 Equal Maxima
3 F3 (1D) 1.0 1 Uneven Decreasing Maxima
4 F4 (2D) 200.0 4 Himmelblau
5 F5 (2D) 1.03163 2 Six-Hump Camel Back
6 F6 (2D) 186.731 18 Shubert (2D)
7 F7 (2D) 1.0 36 Vincent (2D)
8 F6 (3D) 2709.0935 81 Shubert (3D)
9 F7 (3D) 1.0 216 Vincent (3D)

10 F8 (2D) -2.0 12 Modified Rastrigin - All Global Optima
11 F9 (2D) 0 6 Composition Function 1
12 F10 (2D) 0 8 Composition Function 2
13 F11 (2D) 0 6 Composition Function 3 (2D)
14 F11 (3D) 0 6 Composition Function 3 (3D)
15 F12 (3D) 0 8 Composition Function 4 (3D)
16 F11 (5D) 0 6 Composition Function 3 (5D)
17 F12 (5D) 0 8 Composition Function 4 (5D)
18 F11 (10D) 0 6 Composition Function 3 (10D)
19 F12 (10D) 0 8 Composition Function 4 (10D)
20 F12 (20D) 0 8 Composition Function 4 (20D)

5.2 Experimental Conditions

The 20 benchmark functions are optimized by SPSO-G/βRNG. As for the graph, GG,
RNG, βRNG with β=1.5, and βRNG with dynamic control of β are compared. In the
dynamic control, β is determined just before generating the graph and is changed from
about 2 to 1 according to the number of function evaluations FE as follows:

β = 2− FE

FEmax
(21)

where FEmax is the maximum number of function evaluations. The maximum numbers
of function evaluations are specified for each function: 5.0e+04 in F1 to F5 (1D or 2D),
2.0e+05 in F6 to F11 (2D), and 4.0e+05 in F6 to F12 (3D or higher).

The population sizes are specified for each problem: N=50 in problems 1, 2, 3, 4, 5
and 10, N=100 in problem 6, N=400 in problems 18, 19 and 20, N=750 in problem 7,
N=1500 in problem 9, and N=300 in the other problems. The archive size NA=N . For
each problem, 50 runs are performed.

5.3 Experimental Results

Tables 2 shows the experimental results. The first column shows the problem num-
ber. The third column labeled ϵ shows the accuracy level. The columns labeled GG,
1.5RNG, RNG and dynamic shows a PR value for each accuracy level and the mean PR
value for all accuracy levels over 50 runs in case of β=1, β=1.5, β =2 and the dynamic
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control of β according to Eq. (21), respectively. Best mean PR values are highlighted in
bold. GG attained the best mean PR values in two problems 11 and 13, 1.5RNG attained
the best mean PR values in four problems 7, 12, 14 and 15, RNG attained the best mean
PR values in four problems 8, 11, 12 and 17, and the dynamic control attained the best
mean PR values in four problems 9, 18, 19 and 20. The dynamic control attained the
best mean PR value for all problems followed by RNG and 1.5RNG. It is thought that
the dynamic control is effective to find optimal solutions especially in high-dimensional
problems such as problem 18, 19 and 20. In multimodal optimization problems, speci-
ation into a large number of species is desirable in order to find many solutions in the
early stage, and speciation into a relatively small number of species is desireble in order
to obtain a highly accurate solution in the final stage. Especially for high-dimensional
problems, the number of species in the early stage tends to be insufficient in GG, and
that in the final stage tends to be too large in RNG, but it is thought that the dynamic
control realized a proper number of species in both stages.

NMMSO (Niching Migratory Multi-Swarm Optimiser) [21] is a very good PSO-
based multimodal optimization algorithm and ranked first in the CEC competition on
Niching Methods for Multimodal Optimization in 2015 and 2017. NMMSO achieved
0.8221 as the mean PR value for all accuracy levels and all problems. SPSO-G/βRNG
with 1.5RNG, RNG and the dynamic control achieved 0.826824, 0.828957 and 0.830852
as the mean PR values, respectively, which are better results than NMMSO.

6 Conclusions

In this study, βRNG was proposed for solving multimodal problems and was adopted
in PSO with graph-based speciation. Four graphs GG, 1.5RNG, RNG and the dynamic
control of the βRNG are compared by solving CEC2013 benchmark problems for mul-
timodal optimization. It was shown that the dynamic control of βRNG from RNG to GG
is the best graph for solving the benchmark problems. Especially, the dynamic control
is suitable for finding many and accurate optima in higher dimensional problems.

PSO-G/βRNG cannot find enough optimal solutions in composition functions (prob-
lems 13-20). In the initial stage, SPSO-G can find many solutions, although the accuracy
is low. However, it is difficult to find good objective values in a narrow peak, and search
points in the narrow peak are gradually absorbed by other species in a wider peaks.

In the future, we will devise a way to keep the species in narrow peaks and find
good solutions at the peaks. Also, we will apply the proposed graph and method to
other population-based algorithms.
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Table 2. Experimental results

Function ϵ GG 1.5RNG RNG dynamic
1 F1 1.0e-01 1 1 1 1

(1D) 1.0e-02 1 1 1 1
1.0e-03 1 1 1 1
1.0e-04 1 1 1 1
1.0e-05 1 1 1 1
mean 1 1 1 1

2 F2 1.0e-01 1 1 1 1
(1D) 1.0e-02 1 1 1 1

1.0e-03 1 1 1 1
1.0e-04 1 1 1 1
1.0e-05 1 1 1 1
mean 1 1 1 1

3 F3 1.0e-01 1 1 1 1
(1D) 1.0e-02 1 1 1 1

1.0e-03 1 1 1 1
1.0e-04 1 1 1 1
1.0e-05 1 1 1 1
mean 1 1 1 1

4 F4 1.0e-01 1 1 1 1
(2D) 1.0e-02 1 1 1 1

1.0e-03 1 1 1 1
1.0e-04 0.995 1 1 1
1.0e-05 0.995 1 1 1
mean 0.998 1 1 1

5 F5 1.0e-01 1 1 1 1
(2D) 1.0e-02 1 1 1 1

1.0e-03 1 1 1 1
1.0e-04 1 1 1 1
1.0e-05 1 1 1 1
mean 1 1 1 1

6 F6 1.0e-01 1 1 1 1
(2D) 1.0e-02 1 1 1 1

1.0e-03 1 1 1 1
1.0e-04 1 1 1 1
1.0e-05 1 1 1 1
mean 1 1 1 1

7 F7 1.0e-01 1 1 1 1
(2D) 1.0e-02 0.992222 0.995 0.987778 0.990556

1.0e-03 0.988889 0.991667 0.983333 0.983889
1.0e-04 0.981667 0.983333 0.977778 0.977778
1.0e-05 0.974444 0.977778 0.967778 0.965
mean 0.987444 0.989556 0.983333 0.983445

8 F6 1.0e-01 0.999259 0.999753 1 1
(3D) 1.0e-02 0.999259 0.999753 1 0.999753

1.0e-03 0.999012 0.999506 1 0.998765
1.0e-04 0.996049 0.999012 0.999259 0.998519
1.0e-05 0.986173 0.997037 0.997778 0.997284
mean 0.99595 0.999012 0.999407 0.998864

9 F7 1.0e-01 1 1 1 1
(3D) 1.0e-02 0.839907 0.849722 0.852222 0.852593

1.0e-03 0.796204 0.805741 0.80787 0.810185
1.0e-04 0.750185 0.761204 0.762963 0.766944
1.0e-05 0.698426 0.70787 0.707315 0.715648
mean 0.816944 0.824907 0.826074 0.829074

10 F8 1.0e-01 1 1 1 1
(2D) 1.0e-02 1 1 1 1

1.0e-03 1 1 1 1
1.0e-04 1 1 1 1
1.0e-05 1 1 1 1
mean 1 1 1 1

Function ϵ GG 1.5RNG RNG dynamic
11 F9 1.0e-01 1 1 1 1

(2D) 1.0e-02 0.996667 1 0.996667 1
1.0e-03 0.99 0.986667 0.993333 0.986667
1.0e-04 0.986667 0.986667 0.99 0.973333
1.0e-05 0.983333 0.98 0.976667 0.966667
mean 0.991333 0.990667 0.991333 0.985333

12 F10 1.0e-01 0.9825 0.9875 0.9925 0.9875
(2D) 1.0e-02 0.9825 0.9875 0.99 0.9875

1.0e-03 0.9825 0.9875 0.9875 0.985
1.0e-04 0.9825 0.9875 0.985 0.9825
1.0e-05 0.98 0.985 0.98 0.98
mean 0.982 0.987 0.987 0.9845

13 F11 1.0e-01 0.86 0.856667 0.856667 0.85
(2D) 1.0e-02 0.826667 0.813333 0.816667 0.82

1.0e-03 0.796667 0.773333 0.783333 0.78
1.0e-04 0.79 0.77 0.773333 0.773333
1.0e-05 0.773333 0.76 0.77 0.756667
mean 0.809333 0.794667 0.8 0.796

14 F11 1.0e-01 0.696667 0.706667 0.693333 0.706667
(3D) 1.0e-02 0.68 0.686667 0.686667 0.686667

1.0e-03 0.67 0.673333 0.673333 0.67
1.0e-04 0.67 0.673333 0.673333 0.67
1.0e-05 0.67 0.673333 0.673333 0.67
mean 0.677333 0.682667 0.68 0.680667

15 F12 1.0e-01 0.705 0.7325 0.7175 0.715
(3D) 1.0e-02 0.705 0.73 0.7175 0.715

1.0e-03 0.705 0.725 0.7175 0.7125
1.0e-04 0.705 0.7225 0.715 0.71
1.0e-05 0.705 0.7225 0.7125 0.71
mean 0.705 0.7265 0.716 0.7125

16 F11 1.0e-01 0.666667 0.666667 0.666667 0.666667
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1.0e-05 0.666667 0.666667 0.666667 0.666667
mean 0.666667 0.666667 0.666667 0.666667

17 F12 1.0e-01 0.52 0.5475 0.58 0.575
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1.0e-03 0.52 0.5475 0.5775 0.575
1.0e-04 0.515 0.5475 0.5775 0.575
1.0e-05 0.51 0.5475 0.5725 0.5725
mean 0.517 0.5475 0.577 0.5745

18 F11 1.0e-01 0.496667 0.63 0.65 0.653333
(10D) 1.0e-02 0.496667 0.626667 0.646667 0.653333

1.0e-03 0.496667 0.626667 0.646667 0.653333
1.0e-04 0.496667 0.626667 0.646667 0.65
1.0e-05 0.496667 0.626667 0.646667 0.65
mean 0.496667 0.627334 0.647334 0.652
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(10D) 1.0e-02 0.285 0.46 0.475 0.4825
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1.0e-04 0.1175 0.2425 0.2325 0.275
1.0e-05 0.1175 0.225 0.165 0.2675
mean 0.1185 0.2445 0.2395 0.2765

total mean 0.802259 0.826824 0.828957 0.830852
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