
Constrained Optimization by Combining
the α Constrained Method with

Particle Swarm Optimization
Tetsuyuki Takahama

Department of Intelligent Systems
Hiroshima City University
Hiroshima, 731-3194 Japan

email:takahama@its.hiroshima-cu.ac.jp

Setsuko Sakai
Faculty of Commercial Sciences

Hiroshima Shudo University
Hiroshima, 731-3195 Japan
email:setuko@shudo-u.ac.jp

Abstract— Recently, Particle Swarm Optimization (PSO) has
been applied to various application fields. In this paper, a new
optimization method “α Constrained Particle Swarm Optimizer
(αPSO)”, which is the combination of theα constrained method
and PSO, is proposed. TheαPSO is applied to several test prob-
lems such as nonlinear programming problems and problems
with non-convex constraints. It is compared with GENOCOP5.0
which is one of the famous constrained optimization systems. It
is shown that the αPSO is a very fast and good optimization
algorithm for constrained optimization problems.

I. INTRODUCTION

Constrained optimization problems, especially nonlinear
optimization problems, where objective functions are mini-
mized under given constraints, are very important and fre-
quently appear in the real world.

Simplex method is well known as an efficient method to
solve linear programming problems. Also, there are some
efficient methods to solve nonlinear optimization problems,
such as a recursive quadratic programming, a projection
method, and a generalized reduced gradient method [1]. These
methods assume the differentiability of the objective function.
However, it is difficult to apply these methods to problems,
of which the objective function is not differentiable or the
feasible set is not convex.

Generally, the constrained problems are solved by the
combination of a transformation method and a direct search
method. The transformation method [2] converts a constrained
problem into an unconstrained one, and the direct search
method optimizes the objective function by using only the
value of it. There are some transformation methods such as a
penalty method and a multiplier method. The penalty method
is often used to solve optimization problems, because the
solutions are often near the boundary of the feasible set and
the method is used easily for its simplicity. However, it is
difficult to know what value of the penalty coefficient leads
to a feasible solution and how much a search point satisfies
the constraints [3].

Recently, Particle Swarm Optimization (PSO) was pro-
posed [4], [5] and has been applied to various application
fields [6], [7]. In this paper, we propose a new constrained

optimization method ”α Constrained Particle Swarm Opti-
mizer (αPSO)”, which is the combination of the α constrained
method [8], [9], [10], [11] and PSO. PSO was inspired by the
movement of a group of animals such as a bird flock or fish
school, in which the animals avoid predators and seek foods
and mates as a group (not as an individual) while maintaining
proper distance between themselves and their neighbors. PSO
imitates the movement to solve optimization problems and
is considered as a probabilistic multi-point search method
like genetic algorithms (GAs) [12]. Several approaches to the
constrained optimization have been proposed using GAs [13],
[14], [15], [16], [17].

In the α constrained method, the satisfaction level of con-
straints is introduced to indicate how much a search point sat-
isfies the constraints. Also, α level comparison that is an order
relation and gives priority to satisfaction level over the value
of objective function is defined. The α constrained method
is a special transformation method. Usually transformation
methods convert a constrained optimization problem into an
unconstrained problem by changing the objective function.
In contrast with the methods, the α constrained method does
not transform the objective function, but transforms an algo-
rithm for unconstrained optimization into an algorithms for
constrained optimization by replacing the ordinal comparison
with the α level comparison in direct search methods. In [8],
[9], we proposed the α constrained Powell’s method which
is the combination of the α constrained method and Powell’s
direct search method [18]. In [10], [11], we proposed the
α constrained Simplex method which is the combination of
the α constrained method and Simplex method proposed by
Nelder & Mead [19]. In [13], [14], we proposed the α con-
strained Genetic Algorithm (αGA) which is the combination
of the α constrained method and GAs. We showed that the
constrained optimization problems, of which the objective
functions are not differentiable, are effectively solved by these
methods. In this work, we also show that the α constrained
method is applicable to PSO.

In αPSO, the agent or point which satisfies the constraints
will move to optimize the objective function and the agent
which does not satisfy the constraints will move to satisfy the

constraints, naturally. In this paper, the effectiveness of αPSO
is shown by comparing αPSO with GENOCOP 5.0 [20],
[21], which is the method of developing GENOCOPIII [17],
[22], [23], on various types of test problems, such as linear
programming problems, nonlinear programming problems,
and problems with non-convex constraints.

II. CONSTRAINED OPTIMIZATION PROBLEMS

The following optimization problem (P) with the inequality
constraints, the equality constraints, the upper bound con-
straints and the lower bound constraints will be discussed
in this study:

(P) minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . , q

hj(x) = 0, j = q + 1, . . . ,m

li ≤ xi ≤ ui, i = 1, . . . , n,

(1)

where x = (x1, x2, · · · , xn) is an n dimensional vector,
f(x) is an objective function, gj(x) ≤ 0, j = 1, · · · , q are
q inequality constraints and hj(x) = 0, j = q + 1, · · ·m
are m − q equality constraints. f, gj and hj are linear or
nonlinear real-valued functions. ui and li, i = 1, · · ·n are
the upper bounds and the lower bounds of xi, respectively.
Also, let the feasible space in which every point satisfies all
constraints be denoted by F and the set in which every point
satisfies the upper and lower bound constraints be denoted by
S (⊃ F).

III. THE α CONSTRAINED METHOD

We survey briefly the α constrained method [8], [9], [10],
[11], [13], [14].

A. The constrained optimization problems and the satisfac-
tion level

In the α constrained method, the satisfaction level of
constraints µ(x), which indicates how much a search point x

satisfies the constraints, is introduced. The satisfaction level
µ(x) is the following function:




µ(x) = 1, if gi(x) ≤ 0, hj(x) = 0
for all i, j

0 ≤ µ(x) < 1, otherwise
(2)

In order to define the satisfaction level µ(x) of (P), the
satisfaction level of each constraint in (P) is defined and the all
satisfaction levels are combined. For example, each constraint
in (P) can be transformed into one of the following satisfac-
tion levels that are defined by piecewise linear functions on
gi and hj :

µgi
(x) =




1, if gi(x) ≤ 0
1 − gi(x)

bi
, if 0 ≤ gi(x) ≤ bi

0, otherwise
(3)

µhj
(x) =

{
1 − |hj(x)|

bj
, if |hj(x)| ≤ bj

0, otherwise,
(4)

where bi and bj are proper positive real numbers. In order
to obtain the satisfaction level µ(x) of (P), the satisfaction
levels µgi

(x) and µhj
(x) need to be combined. Usually the

minimization is used for the combination operator:

Minimization µ(x) = min
i,j

{µgi
(x), µhj

(x)} (5)

B. The α level comparison

The α level comparison is defined as an order relation on
the set of (f(x), µ(x)). If the satisfaction level of a point is
less than 1, the point is not feasible and its worth is low. The
α level comparisons are defined by a lexicographic order in
which µ(x) proceeds f(x), because the feasibility of x is
more important than the minimization of f(x).

Let f1 (f2) and µ1 (µ2) be the function values and the
satisfaction levels at a point x1 (x2), respectively. Then, for
any α satisfying 0 ≤ α ≤ 1, α level comparison <αand
≤αbetween (f1, µ1) and (f2, µ2) is defined as follows:

(f1, µ1)<α(f2, µ2) ⇔



f1 < f2, if µ1, µ2 ≥ α

f1 < f2, if µ1 = µ2

µ1 > µ2, otherwise
(6)

(f1, µ1)≤α(f2, µ2) ⇔



f1 ≤ f2, if µ1, µ2 ≥ α

f1 ≤ f2, if µ1 = µ2

µ1 > µ2, otherwise
(7)

In case of α=0, α level comparison <0 and ≤0 are equivalent
to the ordinal comparison < and ≤ between function values.
Also, in case of α = 1, <1 and ≤1 are equivalent to
the lexicographic order in which the satisfaction level µ(x)
precedes the function value f(x).

C. The properties of the α constrained method

The α constrained method converts a constrained optimiza-
tion problem into an unconstrained one by replacing the order
relation in direct search methods with the α level comparison.
An optimization problem solved by the α constrained method,
that is, a problem in which the ordinary comparison is
replaced with the α level comparison, (P≤α

), is defined as
follows:

(P≤α
) minimize≤α

f(x), (8)

where minimize≤α
means the minimization based on the α

level comparison ≤α. Also, a problem (Pα) is defined that the
constraints of (P), that is, µ(x) = 1, is relaxed and replaced
with µ(x) ≥ α:

(Pα) minimize f(x)
subject to µ(x) ≥ α

(9)

It is obvious that (P1) is equivalent to (P).
For the three types of problems, (Pα), (P≤α

) and (P), the
following theorems are given [8], [9].

Theorem 1: If an optimal solution (P1) exists, any optimal
solution of (P≤α

) is an optimal solution of (Pα).
Theorem 2: If an optimal solution of (P) exists, any opti-

mal solution of (P≤1) is an optimal solution of (P).

Theorem 3: Let {αn} be a strictly increasing non-negative
sequence and converge to 1. Let f(x) and µ(x) be continuous
functions of x. Assume that an optimal solution x∗ of (P1)
exists and an optimal solution x̂n of (P≤α

) exists for any
αn. Then, any accumulation point to the sequence {x̂n} is
an optimal solution of (P1).

Theorem 1 and 2 show that a constrained optimization
problem can be transformed into an equivalent unconstrained
optimization problem by using the α level comparison. So,
if the α level comparison is incorporated into an existing
unconstrained optimization method, constrained optimization
problems can be solved. Theorem 3 shows that, in the α

constrained method, an optimal solution of (P1) can be given
by converging α to 1 as well as by increasing the penalty
coefficient to infinity in the penalty method.

IV. THE α CONSTRAINED PARTICLE SWARM OPTIMIZER

αPSO

In this section, the α constrained swarm optimizer αPSO
is defined by combining the α constrained method with the
direct search method PSO.

A. Particle swarm optimization PSO

Some kinds of animals avoid predators, and seek foods and
mates as a group, not as an individual or an agent. In a group
of animals, such as a bird flock, a fish school and a insect
swarm, they synchronously move with maintaining proper
distance between themselves and their neighbors. The group
often changes the direction suddenly, scatters and regroups. It
is thought that the behavior of the group can be explained by
some simple rules. The agents in the group share information
among all members in searching food. They profit from not
only the private history but also the experience of all other
members. The information sharing brings great advantage into
the agents when the resource is unpredictably distributed in
the searching field.

PSO is the multipoint search method that is developed
through the simulation of above simplified social models. For
PSO is based on such a very simple concept, it can be realized
by primitive mathematical operators. It computationally is
very efficient, runs very fast, and requires few memories.

Searching procedures by PSO can be described as follows:
A group of agents optimizes a certain objective function f(·).
At any time t, each agent i knows its current position xt

i. It
also remembers its private best value until now pbesti and
the position x∗

i .

pbesti = min
t=1,···,k

f(xt
i) (10)

x∗
i = arg min

t=1,···,k
f(xt

i) (11)

Moreover, every agent knows the best value in the group
until now gbest and the position x∗

G.

gbest = min
i

pbesti (12)

x∗
G = arg min

i
f(x∗

i) (13)

The modified velocity vk+1
i of each agent can be calculated

by using the current velocity vk
i and the difference among

xk
i , x∗

i and x∗
G as shown below:

vk+1
i = wvk

i +c1 rand (x∗
i −xk

i)+c2 rand (x∗
G−xk

i) (14)

where rand is a random number in the interval [0, 1].
The parameters c1 and c2 are called ”cognitive” and ”social”
parameters, respectively, and they are used to bias the agent’s
search towards its own best previous position and towards
the best experience of the group. The parameter w is called
”inertia” weight and it is used to control the trade-off between
the global and the local searching ability of the group.

Using the above equation (14), a certain velocity that
gradually get close to pbesti and gbest can be calculated. The
position of agent i, xk

i , is replaced with xk+1
i as follows:

xk+1
i = xk

i + vk+1
i (15)

B. Algorithm of αPSO

The algorithm of αPSO can be defined by replacing the
ordinary comparisons with the α level comparisons in PSO
as follows:

1) Initializing agents
Each agent is initialized with a point x and a velocity
v. Each point is generated as a random point in S.
Each element of the velocity is generated as a random
number in [−vmax,vmax].

2) Finding the best agent
All agents are compared by the α level comparison <α

and the best point x∗
G is decided.

3) Updating agents
For each agent, the velocity v is updated based on the
current velocity, the best point until now of the agent
x∗

i , and the best point until now in the group x∗
G. The

new point for the agent is updated by eqs.(14) and (15).
If the current point is better than the best visited point
of the agent, the best point is replaced by the current
point. If the current point is better than the best visited
point in the group, the best point is replaced by the
current point.

4) Iteration
If the number of iteration is smaller than the predefined
number T , go back to 2. Otherwise the execution is
stopped.

Following is the sample algorithm of αPSO coded by C-
like language based on Shi’s PSO code [24], [25].

αPSO()
{

w=w0;
Initialize P (0);
x∗

G=arg min<α f(x), x in P (0);
for(t=1;t ≤ T;t++) {
for(each agent i in P (t)) {

vi=wvi+φ1(x∗
i-xi)+φ2(x∗

G-xi);

xi=xi+vi;
if(f(xi)<αf(x∗

i)) {
x∗

i=xi;
if(f(xi)<αf(x∗

G)) x∗
G=xi;

}
}
w=w + (wT − w0)/T;

}
}

where w is the weight for the current velocity and is decreased
from w0 to wT linearly, and φ1 and φ2 are uniform random
variables in [−2, 2].

V. CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS

In this paper, some test problems are optimized, and the
results by αPSO are compared with those by GENOCOP5.0.

A. Test problems and the experimental conditions

The six problems are tested. Five test problems G1 – G5

are given by Michalewicz [16], [23] and a test problem S1

is given by Sakawa [3]. These test problems are shown in
Table I. All problems are nonlinear constrained programming
problems. All constraints of G1 are linear functions and the
objective function of G2 is a linear function. Also, G4 has
the equality constraints and S1 is a nonlinear problem with
non-convex constraints.

The standard settings in GENOCOP 5.0 are as follows: The
population size of search points and that of reference points
are 70 respectively. The maximum generations T = 5000
and the parameter of nonlinear ranking selection c = 0.1.
Each crossover rate for the simple crossover, the arithmetical
crossover and the heuristic crossover is 4/70. Also, each
mutation rate for the boundary mutation, the uniform mu-
tation, the non-uniform mutation and the whole non-uniform
mutation is 4/70.

In GENOCOP 5.0, reference points that satisfy all con-
straints are searched randomly. However, when the feasible
region is very narrow as in G4, any reference point cannot be
found, or even if some reference points were found, it couldn’t
be optimized sufficiently. Thus, based on Michalewicz’s pro-
posal, the equality constraints are relaxed, that is, all equality
constraints hj(x) = 0, j = q + 1, · · · ,m are replaced by
inequalities:

|hj(x)| ≤ ε, ε > 0 (16)

In this experiments, ε = 10−3. Furthermore, when any
reference point cannot be found, reference points are searched
additionally, by minimizing the sum of squares of the func-
tions in the equality constraints,

∑
j hj(x)2, with the simplex

method of Nelder & Mead.
In αPSO, the same settings are used for all problems.

The parameters for the α constrained method are defined
as follows: Every satisfaction level are defined as piecewise
linear functions like eqs.(3) and (4), and set the constants
bi = bj = 10000. The satisfaction levels are combined by
minimization eq.(5). The α level is fixed as α = 1 for

TABLE I

TEST PROBLEMS

G1(x) = 5
∑4

i=1
xi − 5

∑4

i=1
x2

i −
∑13

i=5
xi,

subject to
2(x1 + x2) + x10 + x11 ≤ 10,
2(x1 + x3) + x10 + x12 ≤ 10,
2(x2 + x3) + x11 + x12 ≤ 10,
−8x1 + x10 ≤ 0, −8x2 + x11 ≤ 0,
−8x3 + x12 ≤ 0, −2x4 − x5 + x10 ≤ 0,
−2x6 − x7 + x11 ≤ 0, −2x8 − x9 + x12 ≤ 0,
0 ≤ xi ≤ 1, i = 1, . . . , 9,
0 ≤ xi ≤ 100, i = 10, 11, 12, 0 ≤ x13 ≤ 1.

G2(x) = x1 + x2 + x3,
subject to
1 − 0.0025(x4 + x6) ≥ 0,
1 − 0.0025(x5 + x7 − x4) ≥ 0,
1 − 0.01(x8 − x5) ≥ 0,
x1x6 − 833.33252x4 − 100x1 + 83333.333 ≥ 0,
x2x7 − 1250x5 − x2x4 + 1250x4 ≥ 0,
x3x8 − 1250000 − x3x5 + 2500x5 ≥ 0,
100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, i = 2, 3,
10 ≤ xi ≤ 1000, i = 4, · · · , 8.

G3(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7,

subject to
127 − 2x2

1 − 3x4
2 − x3 − 4x2

4 − 5x5 ≥ 0,
282 − 7x1 − 3x2 − 10x2

3 − x4 + x5 ≥ 0,
196 − 23x1 − x2

2 − 6x2
6 + 8x7 ≥ 0,

−4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7 ≥ 0,

−10 ≤ xi ≤ 10, i = 1, . . . , 7.

G4(x) = ex1x2x3x4x5 ,
subject to
x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 10,

x2x3 − 5x4x5 = 0, x3
1 + x3

2 = −1,
−2.3 ≤ xi ≤ 2.3, i = 1, 2, −3.2 ≤ xi ≤ 3.2, i = 3, 4, 5.

G5(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
subject to
105 − 4x1 − 5x2 + 3x7 − 9x8 ≥ 0,
−10x1 + 8x2 + 17x7 − 2x8 ≥ 0,
8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0,
−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2

3 + 7x4 + 120 ≥ 0,
−5x2

1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0,
−x2

1 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0,
−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2

5 + x6 + 30 ≥ 0,
3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0,
−10 ≤ xi ≤ 10, i = 1, . . . , 10.

S1(x) = x3
1 + (x2 − 5)2 + 3(x3 − 9)2 − 12x3 + 2x3

4
+4x2

5 + (x6 − 5)2 − 6x2
7 + 3(x7 − 2)x2

8−x9x10 + 4x3
9 + 5x1x3 − 3x1x7 + 2x8x7,

subject to
−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2

3 + 7x4

−2x5x6x8 + 120 ≥ 0,
−5x2

1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0,
−x2

1 − 2(x2 − 2)2 + 2x1x2 − 14x5 − 6x5x6 ≥ 0,
−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2

5 + x5x8 + 30 ≥ 0,
3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0,
4x1 + 5x2 − 3x7 + 9x8 ≤ 105,
10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
−8x1 + 2x2 + 5x9 − 2x10 ≤ 12,
−5 ≤ xi ≤ 10, i = 1, . . . , 10.

TABLE II

EXPERIMENTAL RESULTS

f Optimal Item αPSO GCOP5.0
best -15.000 -15.000
average -14.938 -11.523

G1 -15.000 worst -12.983 -3.442
σ 0.340 4.447
CPU(s) 2.337 24.810
best 7061.810 7087.337
average 7674.143 8114.309

G2 7049.331 worst 12034.500 11107.814
σ 720.713 966.195
CPU(s) 1.644 19.470
best 680.631 680.634
average 680.646 680.750

G3 680.630 worst 680.679 683.255
σ 0.010 0.289
CPU(s) 1.555 18.590
best 0.06856 0.05583
average 1.23149 1.40557
worst 10.18960 18.68213

G4 0.05395 σ 1.39802 2.53356
CPU(s) 1.466 28.240
#feasible 86 0
const err 4.552e-17 8.836e-4
best 24.319 24.529
average 25.182 28.362

G5 24.306 worst 27.672 48.058
σ 0.778 3.926
CPU(s) 2.079 27.530
best -216.655 -216.402
average -170.050 -84.652

S1 -216.602∗ worst 9.085 513.794
σ 80.8358 165.486
CPU(s) 2.081 24.710

* The best value of S1 that was found by [3].

all problems. Also, an equality constraint isn’t transformed
into eq.(16), but eq.(4) is used as the satisfaction level. The
parameters for PSO are as follows: The number of agents
N = 70, vmax=2, w0 = 1.0, wT = 0.0. The maximum
number of iterations is T = 5000.

In works of Michalewicz, 10 trials were tested for each
problem. Since good results might continue in 10 trials by
chance, 100 trials are tested in order to evaluate more exactly
in this paper.

B. Experimental results

Experimental results on the test problems are shown in
Table II, in which each value is the average of 100 trials.
”Optimal” is the optimal value in each problem. Also, ”best”,
”average”, ”worst”, and ”σ” are the best value, the average
value, the worst value, and the standard deviation of the
objective function’s values for the best agent in each trial,
respectively. CPU(s) is the average execution time (seconds)
for a trial using a computer with UltraSPARCIII (750MHz).
#feasible shows the number of trials when feasible solutions
are found. ”const err” shows how far the best agent is away
from the feasible region, that is, maxi,j{0, gi(x), |hj(x)|}.

In all problems, αPSO found the better solutions than
GENOCOP 5.0 on average. In G1, αPSO and GENOCOP 5.0

TABLE III

RATIO OF FEASIBLE REGIONS

G1 G2 G3 G4 G5 S1

0.00023% 0.00064% 0.52685% 0.0% 0.0001% 0.00077%

found the optimal solution. In G2, G3, G5 and S1, the best
values found by αPSO are smaller than those by GENO-
COP 5.0, or αPSO found better solutions than GENOCOP 5.0.
Especially in S1, αPSO found the solutions better than the
solution that was found by Sakawa.

In all problems, αPSO could find feasible solutions. In
G4, αPSO found the feasible solutions 86 times, but GENO-
COP5.0 cannot find any feasible solution of G4. The solutions
obtained by GENOCOP 5.0 are away about 3 × 10−4 ∼
1×10−3 from the feasible region because the constraints are
relaxed. Thus, it is thought that the ability of αPSO searching
feasible solutions is higher for the problems with the equality
constraints.

As for the execution time, αPSO is more than 10 times
faster than GENOCOP5.0. Therefore, it is thought that αPSO
is a very faster optimization algorithm than GENOCOP 5.0.

Table III shows ρ=|F ∩ S|/|S|, which is the ratio between
the size of the feasible space and the whole search space. The
ratio ρ for each problem is obtained by generating 10,000,000
random points within S and counting the points within F .
From the table, the feasible region of G3 is very wide and the
feasible region of G5 is very narrow. In both of the problems
with wide and narrow feasible region, the considerably better
solutions were found by αPSO than by GENOCOP 5.0. Thus,
αPSO is a method that the solution with high precision can
be obtained even if the problem has the wide and narrow
feasible region.

VI. CONCLUSIONS

We proposed αPSO that combined the α constrained
method with PSO. By applying αPSO to the six constrained
optimization problems, it was shown that αPSO obtained an
approximate solution near the optimal one for every problem
by the numerical experiments and αPSO was a high precision
and stable optimization algorithm. Also, by comparing αPSO
with GENOCOP 5.0 which is known as an efficient algorithm
for the constrained optimization problems, it was shown that
αPSO was a very fast and good algorithm.

In this paper, only simple version of PSO is used. In the
future, we are planning to introduce some operators such as
the boundary mutation in order to improve the performance
of αPSO. Also, we will apply αPSO to various application
fields.

Acknowledgement

This research is supported in part by Grant-in-Aid for
Scientific Research (C)(2)(No. 14580498, 16500083) of Japan
society for the promotion of science.

REFERENCES

[1] D.G.Luenberger. Linear and nonlinear programming, Addison-
Wesley, 1984.

[2] A.V.Fiacco, G.P.McCormick. Nonlinear programming: sequen-
tial unconstrained minimization techniques, Society for Indus-
trial and Applied Mathematics, 1990.

[3] M.Sakawa and K.Yauchi. Floating Point Genetic Algorithms
for Nonconvex Nonlinear Programming Problems: Revised
GENOCOPIII, IEICE Trans. on Information and systems,
vol.J81-A, no.1, pp90-97, Jan. 1998, In Japanese.

[4] J.Kennedy and R.Eberhart. Particle Swarm Optimization, Proc.
of IEEE International Conference on Neural Networks, vol.IV,
pp.1942–1948, Perth, Australia, 1995.

[5] J.Kennedy and R.C.Eberhart. Swarm Intelligence, Morgan
Kaufmann, San Francisco, 2001.

[6] H.Yoshida, K.Kawata, Y.Fukuyama, S.Takayama and
Y.Nakanishi. A Particle Swarm Optimization for Reactive
Power and Voltage Control Considering Voltage Security
Assessment, IEEE Trans. on Power Systems, vol.15, no.4,
pp.1232–1239, Nov. 2001.

[7] T.Bartz-Beielstein, P.Limbourg, J.Mehnen, K.Schmitt,
K.E.Parsopoulos and M.N.Vrahatis. Particle Swarm Optimizers
for Pareto Optimization with Enhamced Archiving Techniques,
Proceedings of IEEE Congress on Evolutionary Computation
2003, Canbella, Australia, pp.1780–1787, 2003.

[8] T.Takahama and S.Sakai. Tuning Fuzzy Control Rules by the
α Constrained Method Which Solves Constrained Nonlinear
Optimization Problems, IEICE Trans. on Information and
Systems, vol.J82-A, no.5, pp.658–668, May 1999, in Japanese.

[9] T.Takahama and S.Sakai. Tuning Fuzzy Control Rules by the
α Constrained Method Which Solves Constrained Nonlinear
Optimization Problems, Electronics and Communications in
Japan, vol.83, no.9, pp.1–12, 2000.

[10] T.Takahama and S.Sakai. Learning Fuzzy Control Rules by
α-Constrained Simplex Method, IEICE Trans. on Information
and Systems, vol.J83-D-I, no.7, pp.770–779, July 2000, in
Japanese.

[11] T.Takahama and S.Sakai. Learning Fuzzy Control Rules by α-
Constrained Simplex Method, System and Computers in Japan,
vol.34, no.6, pp.80–90, 2003.

[12] D.E.Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison Wesley, 1989.

[13] T.Takahama and S.Sakai. Constrained Optimization by α Con-
strained Genetic Algorithm (αGA), Systems and Computers in
Japan, vol.35, no.5, pp.11–22, May 2004.

[14] T.Takahama and S.Sakai. Constrained Optimization by α Con-
strained Genetic Algorithm (αGA), IEICE Trans. on Informa-
tion and Systems, vol.J86-D-I, no.4, pp.198–207, Apr. 2003.

[15] Z.Michalewicz. A Survey of Constraint Handling Techniques
in Evolutionary Computation Methods, Proc. of the 4th Annual
Conference on Evolutionary Programming, pp. 135–155, MIT
Press, Cambridge, MA, 1995.

[16] Z.Michalewicz. Genetic Algorithms, Numerical Optimization
and Constraints, Proc. of the 6th International Conference on
Genetic Algorithms, pp.151–158, Pittsburgh, July 1995.

[17] Z.Michalewicz. Genetic algorithm + data structures = evolu-
tion programs 3rd ed., Springer-Verlag, Berlin, 1996.

[18] M.J.D.Powell. An Efficient Method for Finding the Minimum
of a Function of Several Variables without Calculating Deriva-
tives, Computer J., vol.7, pp.155–162, 1964.

[19] J.A.Nelder and R.Mead. A Simplex Method for Function
Minimization, J. Computer, vol.7, pp.308–313, 1965.

[20] S.Koziel and Z.Michalewicz. A Decoder-based Evolutionary
Algorithm for Constrained Parameter Optimization Problems,
Proc. of the 5th Parallel Problem Solving from Nature, Lecture
Notes in Computer Science, vol.1498, pp.231–240, Amster-
dam, Sep. 1998.

[21] S.Koziel and Z.Michalewicz. Evolutionary Algorithms, Homo-
morphous Mappings, and Constrained Parameter Optimization,
Evolutionary Computation, vol.7, no.1, pp.19–44, 1999.

[22] Z.Michalewicz and G.Nazhiyath. Genocop III: A Co-
evolutionary Algorithm for Numerical Optimization Prob-
lems with Nonlinear Constraints, Proc. of the 2nd IEEE In-
ternational Conference on Evolutionary Computation, vol.2,
pp.647–651, Perth, 1995.

[23] Z.Michalewicz and M.Schoenauer. Evolutionary Algorithms
for Constrained Parameter Optimization Problems, Evolution-
ary Computation, vol.4, no.1, pp.1–32, 1996.

[24] Y.Shi and R.Eberhart. A Modified Particle Swarm Optimizer,
Proc. of IEEE International Conference on Evolutionary Com-
putation, pp.69–73, Anchorage, May 1998.

[25] Y.Shi, http://www.engr.iupui.edu/˜eberhart/web/PSObook.html

