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Abstract—We have proposed to utilize a rough approximation
model, which is an approximation model with low accuracy
and without learning process, to reduce the number of function
evaluations in unconstrained optimization. Although the approx-
imation errors between the true function values and the approx-
imation values estimated by the rough approximation model are
not small, the rough model can estimate the order relation of two
points with fair accuracy. In order to use this nature of the rough
model, we have proposed estimated comparison which omits the
function evaluations when the result of comparison can be judged
by approximation values. In this study, we propose to utilize the
estimated comparison in constrained optimization and propose
the εDEkr , which is the combination of the ε constrained method
and the estimated comparison using kernel regression. The εDEkr
is a very efficient constrained optimization algorithm that can
find high-quality solutions in very small number of function
evaluations. It is shown that the εDEkr can find near optimal
solutions stably in very small number of function evaluations
compared with various other methods on well known nonlinear
constrained problems.

I. INTRODUCTION

Constrained optimization problems, especially nonlinear
optimization problems, where objective functions are mini-
mized under given constraints, are very important and fre-
quently appear in the real world. There exist many studies on
solving constrained optimization problems using evolutionary
algorithms (EAs) [1]–[4]. EAs basically lack a mechanism
to incorporate the constraints of a given problem in the
fitness value of individuals. Thus, many studies have been
dedicated to handle the constraints in EAs. In most successful
constraint-handling techniques, the objective function value
and the sum of constraint violations, or the constraint violation,
are separately handled and an optimal solution is searched
with balancing the optimization of the function value and the
optimization of the constraint violation.

We have proposed the ε constrained differential evolution
(εDE), which adopted one of such techniques called the ε
constrained method and also adopted differential evolution
(DE) as an optimization engine. The εDE can solve con-
strained problems successfully and stably [5]–[8], including
engineering design problems [9]. The ε constrained method
[6] is an algorithm transformation method, which can con-
vert algorithms for unconstrained problems to algorithms for
constrained problems using the ε level comparison, which

compares search points based on the pair of objective value
and constraint violation of them. It has been shown that the
method has general-purpose properties.

Generally, a disadvantage of EAs is that they need a
large number of function evaluations before a well acceptable
solution can be found. An effective method for reducing the
function evaluations is to build an approximation model for
the objective function and to solve the problems using the
approximation values [10]. If an approximation model with
high accuracy can be build, it is possible to reduce the function
evaluations largely. However, building the high-quality approx-
imation model is very difficult and time-consuming. It needs
to learn the model from many pairs of known solution and its
function value. Also, a proper approximation model depends
on the problems to be optimized. It is difficult to design a
general-purpose approximation model with high accuracy.

We have proposed to utilize an approximation model with
low accuracy and without learning process to reduce the
number of function evaluations effectively. In the following,
the approximation model is called a rough approximation
model. Although the approximation errors between the true
function values and the approximation values estimated by the
rough approximation model are not small, the approximation
model can estimate whether the function value of a point is
smaller than that of the other point or not with fair accuracy. In
order to use this nature of the rough model, we have proposed
estimated comparison [11]–[13]. In the estimated comparison,
the approximation values are compared first. When a value is
worse enough than the other value, the estimated comparison
returns an estimated result without evaluating the objective
function. By using the estimated comparison, the evaluation of
the objective function is sometimes omitted and the number of
function evaluations can be reduced.

In this study, we propose to utilize the estimated com-
parison in constrained optimization and propose the εDEkr,
which is the combination of the ε constrained method and
the estimated comparison using kernel regression. The kernel
regression without learning process is adopted as a rough ap-
proximation model. The εDEkr is a very efficient constrained
optimization algorithm that can find high-quality solutions
in very small number of function evaluations. Well known
thirteen constrained problems mentioned in [2] are solved by
the εDEkr within very fewer, about one fourth, number of



function evaluations. The effectiveness of the εDEkr is shown
by comparing it with various methods on the problems.

In Section II, constrained optimization methods and ap-
proximation methods are reviewed. The ε constrained method
and the estimated comparison using kernel regression are
explained in Section III and IV, respectively. The εDEkr is
proposed in Section V. In Section VI, experimental results
on thirteen constrained problems are shown and the results of
the εDEkr are compared with those of other methods. Finally,
conclusions are described in Section VII.

II. CONSTRAINED OPTIMIZATION AND PREVIOUS WORKS

A. Constrained Optimization Problems
In this study, the following optimization problem (P) with

inequality constraints, equality constraints, upper bound con-
straints and lower bound constraints will be discussed.

(P) minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . , q

hj(x) = 0, j = q + 1, . . . ,m
li ≤ xi ≤ ui, i = 1, . . . , n,

(1)

where x = (x1, x2, · · · , xn) is an n dimensional vector,
f(x) is an objective function, gj(x) ≤ 0 and hj(x) = 0
are q inequality constraints and m − q equality constraints,
respectively. Functions f, gj and hj are linear or nonlinear
real-valued functions. Values ui and li are the upper bound
and the lower bound of xi, respectively. Also, let the feasible
space in which every point satisfies all constraints be denoted
by F and the search space in which every point satisfies the
upper and lower bound constraints be denoted by S (⊃ F).

B. Constrained optimization methods
EAs for constrained optimization can be classified into

several categories according to the way the constraints are
treated as follows [3]:
(1) Constraints are only used to see whether a search point is
feasible or not. Approaches in this category are usually called
death penalty methods. In this category, generating initial
feasible points is difficult and computationally demanding
when the feasible region is very small.
(2) The constraint violation, which is the sum of the violation
of all constraint functions, is combined with the objective
function. The penalty function method is in this category [14]–
[17]. The main difficulty of the method is the selection of
an appropriate value for the penalty coefficient that adjusts the
strength of the penalty. In order to solve the difficulty, some
methods, where a kind of the penalty coefficient is adaptively
controlled [18], [19], are proposed.
(3) The constraint violation and the objective function are
used separately. In this category, both the constraint violation
and the objective function are optimized by a lexicographic
order in which the constraint violation precedes the objective
function. Deb [20] proposed a method that adopts the extended
objective function, which realizes the lexicographic ordering.
Takahama and Sakai proposed the α constrained method [21],
and ε constrained method [22] that adopt a lexicographic
ordering with relaxation of the constraints. Runarsson and Yao
[23] proposed the stochastic ranking method that adopts the
stochastic lexicographic order, which ignores the constraint
violation with some probability. Mezura-Montes and Coello
[24] proposed a comparison mechanism that is equivalent to

the lexicographic ordering. Venkatraman and Yen [25] pro-
posed a two-step optimization method, which first optimizes
constraint violation and then objective function. These methods
were successfully applied to various problems.
(4) The constraints and the objective function are optimized by
multiobjective optimization methods. In this category, the con-
strained optimization problems are solved as the multiobjective
optimization problems in which the objective function and
the constraint functions are objectives to be optimized [26]–
[32]. But in many cases, solving multiobjective optimization
problems is a more difficult and expensive task than solving
single objective optimization problems.
(5) Hybridization methods. In this category, constrained prob-
lems are solved by combining some of above mentioned meth-
ods. Mallipeddi and Suganthan [33] proposed a hybridization
of the methods in category (2), (3) and (4).

C. Evolutionary algorithms using Approximation Models
In this section, EAs using approximation models are briefly

reviewed.
Various approximation models are utilized to approxi-

mate the objective function. In most approximation models,
model parameters are learned by least square method, gra-
dient method, maximum likelihood method and so on. In
general, learning model parameters is time-consuming process,
especially in order to obtain models with higher accuracy
and models of larger functions such as functions with large
dimensions.

EAs with approximation models can be classified some
types:
(1) All individuals have only approximation values. Very high
quality approximation model is built and the objective function
is optimized using approximation values only. It is possible to
reduce function evaluations greatly. However, these methods
can be applied well-informed objective function and cannot
be applied to general problems.
(2) Some individuals have approximation values and others
have true values. Methods in this type are called evolution
control approaches and can be classified into individual-based
and generation-based control. The individual-based control
means that good individuals (or randomly selected individuals)
use true values and others use approximation values in each
generation [34], [35]. The generation-based control means that
all individuals use true values once in a fixed number of
generations and use approximation values in other generations
[34], [36]. In the approaches, the approximation model should
be accurate because approximation values are compared with
true values. Also, it is known that approximation models with
high accuracy sometimes generate a false optimum or hide a
true optimum. Individuals may converge into a false optimum
while they are optimized using the approximation models in
some generations. Thus, these approaches are much affected
by the quality of approximation models. It is difficult to utilize
rough approximation models.
(3) All individuals have true values. Some methods in this type
are called surrogate approaches. In the surrogate approaches,
an estimated optimum is searched using an approximation
model that is usually a local model. The estimated optimum
is evaluated to obtain the true value and also to improve the
approximation model [37]–[39]. If the true value is good, the



value is included as an individual. In the approaches, rough
approximation models might be used because approximation
values are compared with other approximation values. These
approaches are less affected by the approximation model than
the evolution control approaches. However, they have the
process of optimization using the approximation model only.
If the process is repeated many times, they are much affected
by the quality of approximation models.

The estimated comparison method is classified into the last
category because all individuals have true values. However, the
method is different from the surrogate approaches. It uses a
global approximation model of current individuals using the
potential model. It does not search for an estimated optimum,
but it judges whether a new individual is worth evaluating
its true value or not. Also, it can specify the margin of
approximation error when the comparison is carried out. Thus,
it is not affected by the approximation model much.

III. THE ε CONSTRAINED METHOD

A. Constraint violation and ε level comparisons
In the ε constrained method, constraint violation φ(x) is

defined. The constraint violation can be given by the maximum
of all constraints or the sum of all constraints.

φ(x) = max{max
j
{0, gj(x)},max

j
|hj(x)|} (2)

φ(x) =
∑
j

||max{0, gj(x)}||p +
∑
j

||hj(x)||p (3)

where p is a positive number.
The ε level comparison is defined as an order relation

on a pair of objective function value and constraint violation
(f(x), φ(x)). If the constraint violation of a point is greater
than 0, the point is not feasible and its worth is low. The ε level
comparisons are defined basically as a lexicographic order in
which φ(x) precedes f(x), because the feasibility of x is more
important than the minimization of f(x). This precedence can
be adjusted by the parameter ε.

Let f1 (f2) and φ1 (φ2) be the function values and the
constraint violation at a point x1 (x2), respectively. Then, for
any ε satisfying ε ≥ 0, ε level comparisons <ε and ≤ε between
(f1, φ1) and (f2, φ2) are defined as follows:

(f1, φ1) <ε (f2, φ2)⇔

{
f1 < f2, if φ1, φ2 ≤ ε
f1 < f2, if φ1 = φ2
φ1 < φ2, otherwise

(4)

(f1, φ1) ≤ε (f2, φ2)⇔

{
f1 ≤ f2, if φ1, φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2
φ1 < φ2, otherwise

(5)

In case of ε=∞, the ε level comparisons <∞ and ≤∞ are
equivalent to the ordinary comparisons < and ≤ between
function values. Also, in case of ε = 0, <0 and ≤0 are
equivalent to the lexicographic orders in which the constraint
violation φ(x) precedes the function value f(x).

B. The properties of the ε constrained method
The ε constrained method converts a constrained optimiza-

tion problem into an unconstrained one by replacing the order
relation in direct search methods with the ε level comparison.
An optimization problem solved by the ε constrained method,

that is, a problem in which the ordinary comparison is replaced
with the ε level comparison, (P≤ε ), is defined as follows:

(P≤ε
) minimize≤ε

f(x), (6)

where minimize≤ε denotes the minimization based on the ε
level comparison ≤ε. Also, a problem (Pε) is defined such
that the constraints of (P), that is, φ(x) = 0, is relaxed and
replaced with φ(x) ≤ ε:

(Pε) minimize f(x)
subject to φ(x) ≤ ε (7)

It is obvious that (P0) is equivalent to (P).
For the three types of problems, (Pε), (P≤ε

) and (P),
the following theorems are given based on the ε constrained
method [22].

Theorem 1: If an optimal solution (P0) exists, any optimal
solution of (P≤ε

) is an optimal solution of (Pε).
Theorem 2: If an optimal solution of (P) exists, any opti-

mal solution of (P≤0 ) is an optimal solution of (P).
Theorem 3: Let {εn} be a strictly decreasing non-negative

sequence and converge to 0. Let f(x) and φ(x) be continuous
functions of x. Assume that an optimal solution x∗ of (P0)
exists and an optimal solution x̂n of (P≤εn

) exists for any
εn. Then, any accumulation point to the sequence {x̂n} is an
optimal solution of (P0).

Theorem 1 and 2 show that a constrained optimization
problem can be transformed into an equivalent unconstrained
optimization problem by using the ε level comparison. So,
if the ε level comparison is incorporated into an existing
unconstrained optimization method, constrained optimization
problems can be solved. Theorem 3 shows that, in the ε
constrained method, an optimal solution of (P0) can be given
by converging ε to 0 as well as by increasing the penalty
coefficient to infinity in the penalty method.

IV. ESTIMATED COMPARISON USING KERNEL
REGRESSION

The kernel regression is explained and the estimated com-
parison is briefly described.

A. Kernel Regression
The kernel regression is a nonparametric regression to

estimate the regression function y = f(x)+ ε using a data set
{(xi, yi) | i = 1, 2, ..., N}, where N is the number of data and
ε is a small noise. The following Nadaraya-Watson estimator
[40], [41], or a weighted average of function values yi, where
the weighting function is a kernel, is often used.

f̂(x) =

∑
iKh(x− xi)yi∑
iKh(x− xi)

(8)

Kh(u) =
1

h
K(u/h) (9)

where f̂ is the estimated function of f , and K is the kernel
with a bandwidth h. The kernel K is a non-negative integrable
function satisfying the following conditions:∫ ∞

−∞
K(u)du = 1 (10)

K(−u) = K(u) , for all u (11)



For example, the followings are representative kernels.

•Epanechnikov:

K(u) =

{
3
4 (1− u

2) (|u| ≤ 1)
0 (otherwise) (12)

•Gaussian:

K(u) =
1√
2π
e−

1
2u

2

(13)

In this study, the following multiplicative kernel and the
kernel regression are used for the multidimensional kernel and
the approximation model:

Kh(u) = Kh1
(u1)Kh2

(u2) · · ·Khn
(un) (14)

f̂(x) =

∑
iKh(x− xi)yi∑
iKh(x− xi)

(15)

where {(xi, yi) | i = 1, 2, · · · , N} is a data set for estimation,
Kh is a kernel, and h is a kernel bandwidth vector.

B. Bandwidth Selection
The performance of kernel regression are affected by the

bandwidth or tuning parameter which controls the degree
of complexity. The choice of bandwidth is very important.
The asymptotically optimal bandwidth, which minimizes the
asymptotic mean integrated squared error (AMISE), is the can-
didate of the bandwidth. The asymptotically optimal bandwidth
for the j-th dimension is defined as follows [42]:

h∗j = σ̂jCν(K,n)N
−1/(2ν+n) (16)

Cν(K,n) =

(
πn/22n+ν−1(ν!)2R(K)n

νκ2ν(K)((2ν − 1)!! + (n− 1)((ν − 1)!!)2)

)1/(2ν+n)

(17)

where ν is the order of the kernel and ν=2 in the ker-
nels described above. σ̂j is the sample variance of {xij}.
R(g) =

∫∞
−∞ g(u)2du is the roughness of a function g.

κν(K) =
∫∞
−∞ uνK(u)du is the moment of the kernel.

R(K) = 1/(2
√
π), κν(K) = 1 in Gaussian kernel and

R(K) = 3/5, κν(K) = 1/5 in Epanechnikov kernel. The
odd factorial means (2s− 1)!! = (2s− 1) · · · 5 · 3 · 1.

In this study, Gaussian kernel is adopted. Therefore, the
following bandwidth is used.

hj = αhσ̂j

(
4

n+ 2

)1/(4+n)

N−1/(4+n) (18)

We introduce the smoothness parameter αh to realize smooth
function approximation and αh >= 1 usually.

C. Estimated Comparison
When the true function values of all points in P = {xi, i =

1, 2, · · · , N} are known and a new child point x′k is generated
from a parent point xk, the approximation values at points x′k
are given as follows:

f̂(x′k) =

∑
i 6=kKh(x

′
k − xi)yi∑

i6=kKh(x
′
k − xi)

(19)

Also, f̂(xk) is given by replacing x′k with xk.
It should be noted that the parent point xk(k = i) is

omitted in the equation. If the parent point is not omitted,

the approximation value of the parent point becomes almost
true value. As the result, the difference between the precision
of approximation at the parent point and that at the child point
becomes big, and it is difficult to compare the approximation
values.

The estimated comparison judges whether the child point is
better than the parent point. In the comparison, the estimation
error of the approximation model σ and a margin parameter
for the approximation error δ are introduced. The function of
the estimated comparison for constrained optimization using
the ε constrained method can be defined as follows:

betterε(x′k, xk, σ) {
if(f̂(x′k) < f̂(xk) + δσ) {

Evaluate x′k;
if((f(x′k), φ(x

′
k)) <ε (f(xk), φ(xk)))

return yes;
}
return no;

}
where the true values at the parent point (f(xk), φ(xk)) is
known. The parameter δ ≥ 0 controls the margin value for the
approximation error. When δ is 0, the estimated comparison
can reject many children and omit a large number of func-
tion evaluations. However, the possibility of rejecting good
child becomes high and a true optimum sometimes might be
skipped. When δ is large, the possibility of rejecting good child
becomes low. However, the estimated comparison can reject
less children and omit a small number of function evaluations.
Thus, δ should have a proper value.

The estimation error σ can be given as the standard
deviation of errors between approximation values and true
values.

V. THE εDEkr

In this section, DE is described first and then the ε con-
strained DE with estimated comparison using kernel regression
(εDEkr) is defined.

A. Differential Evolution
Differential evolution is proposed by Storn and Price [43].

DE is a stochastic direct search method using population or
multiple search points. DE has been successfully applied to the
optimization problems including non-linear, non-differentiable,
non-convex and multi-modal functions. It has been shown that
DE is fast and robust to these functions.

There are some variants of DE that have been proposed,
such as DE/best/1/bin and DE/rand/1/exp. The variants are
classified using the notation DE/base/num/cross. “base” in-
dicates the method of selecting a parent that will form the
base vector. For example, DE/rand selects the parent for the
base vector at random from the population. DE/best selects
the best individual in the population. In DE/rand/1, for each
individual xi, three individuals xp1, xp2 and xp3 are chosen
from the population without overlapping xi and each other.
Fig. 1 shows that a new vector, or a mutant vector xm is
generated by the base vector xp1 and the difference vector
xp2 − xp3, where F is a scaling factor. “num” indicates the
number of difference vectors used to perturb the base vector.
“cross” indicates the crossover mechanism used to create a
child. For example, ‘bin’ shows that the crossover is controlled



by binomial crossover using constant crossover rate, and ‘exp’
shows that the crossover is controlled by a kind of two-point
crossover using exponentially decreasing the crossover rate. A
new child x′i is generated from the parent xi and the mutant
vector xm, where CR is a crossover rate in Fig. 1.

mutation DE/rand/1
p1=randint(1,N) s.t. p1 6= i;
p2=randint(1,N) s.t. p2 6∈ {i, p1};
p3=randint(1,N) s.t. p3 6∈ {i, p1, p2};
xm=xp1+F (xp2 − xp3)

exponential crossover DE/·/·/exp
k=1; j=randint(1,n);
do {

x′i,j=x
m
j ;

k=k+1; j=(j + 1)%n;
} while(k ≤ n && u(0, 1) < CR);
while(k ≤ n) {

x′i,j=xi,j;
k=k+1; j=(j + 1)%n;

}

Fig. 1. Mutation and crossover operation, where randint(1,n) generates
an integer randomly from [1, n] and u(l, r) is a uniform random number
generator in [l, r].

B. The algorithm of the εDEkr

The εDEkr is the DE that adopts the ε constrained method
and the estimated comparison using kernel regression.

The algorithm of the εDEkr is as follows:

1. Initialization of the individuals. Initial N individuals
{xi, i = 1, 2, · · · , N} are generated randomly in
search space S and form an initial population.

2. Initialization of the ε level. An initial ε level is given
by the ε level control function ε(0).

3. Termination condition. If the number of function eval-
uations exceeds the maximum number of evaluations
FEmax, the algorithm is terminated.

4. DE operation. Each individual xi is selected as a
parent. A trial vector or a child x′i is generated by
DE/rand/1/exp operation with a scaling factor F and
a crossover rate CR.

5. Survivor selection. The estimated comparison is used
for comparing the trial vector and the parent. The
child x′i is accepted for the next generation if the
trial vector is better than the parent xi by using
the estimated comparison. Until all individuals are
selected, go back to 4 in order to select the next
individual as a parent.

6. Control of the ε level. The ε level is updated by the
ε level control function ε(t).

7. Go back to 3.

C. Controlling the ε level
The ε level is controlled according to Eqs. (20) and (21).

The initial ε level ε(0) is the constraint violation of the top θ-
th individual in the initial search points. The ε level is updated
until the number of iterations t becomes the control generation
Tc. After the number of iterations exceeds Tc, the ε level is

εDEkr/rand/1/exp()
{
// Initialize the individuals
P=N individuals {xi} generated randomly in S;

// Initialize the ε level
ε=ε(0);
for(t=1; termination condition is false; t++) {
σ=estimation of approximation error in P;
for(i=1; i ≤ N; i++) {

x′i=generated by DE/rand/1/exp operation;
// estimated comparison

if(betterε(x′i, xi, σ)) xi=x′i;
}

// Control the ε level
ε=ε(t);

}
}

Fig. 2. The algorithm of the ε constrained differential evolution with
estimated comparison using kernel regression, where ε(t) is the ε level control
function.

set to 0 to obtain solutions with minimum constraint violation.

ε(0) = φ(xθ) (20)

ε(t) =

{
ε(0)(1− t

Tc
)cp, 0 < t < Tc,

0, t ≥ Tc
(21)

where xθ is the top θ-th individual and θ = 0.2N . This control
is effective to solve problems with equality constraints.

Fig. 2 shows the algorithm of the εDEkr.

VI. SOLVING NONLINEAR OPTIMIZATION PROBLEMS

In this paper, thirteen benchmark problems that are men-
tioned in some studies [3], [23], [24] are optimized, and the
results by the εDEkr are compared with those results.

A. Test problems and the experimental conditions
In the thirteen benchmark problems, problems g03, g05,

g11 and g13 contain equality constraints. In problems with
equality constraints, the equality constraints are relaxed and
converted to inequality constraints according to Eq. (22), which
is adopted in many methods:

|hj(x)| ≤ 10−4 (22)

Problem g12 has disjointed feasible regions. Table I shows
the outline of the thirteen problems [24], [44]. The table
contains the number of variables n, the form of the objective
function, the number of linear inequality constraints (LI),
nonlinear inequality constraints (NI), linear equality constraints
(LE), nonlinear equality constraints (NE) and the number of
constraints active at the optimal solution.

The parameters for εDEkrare as follows: The number of
search points N = 40, the maximum number of evaluations
FEmax = 50, 000, the scaling factor F = 0.7, and the
crossover rate CR = 0.9. The parameters for the ε constrained
method are as follows: Every constraint violation is defined
as a simple sum of constraints, or p = 1 in Eq. (3). The ε
level is controlled using Eqs. (20) and (21) for problems with
equality constraints and is 0 for the other problems. The control
generation Tc = 1500 and the control parameter cp = 5.
For the estimated comparison, the margin δ = 0.001 and the



TABLE I. SUMMARY OF TEST PROBLEMS

f n Form of f LI NI LE NE active
g01 13 quadratic 9 0 0 0 6
g02 20 nonlinear 1 1 0 0 1
g03 10 polynomial 0 0 0 1 1
g04 5 quadratic 0 6 0 0 2
g05 4 cubic 2 0 0 3 3
g06 2 cubic 0 2 0 0 2
g07 10 quadratic 3 5 0 0 6
g08 2 nonlinear 0 2 0 0 0
g09 7 polynomial 0 4 0 0 2
g10 8 linear 3 3 0 0 6
g11 2 quadratic 0 0 0 1 1
g12 3 quadratic 0 93 0 0 0
g13 5 nonlinear 0 0 1 2 3

smoothness αh = 1.8. In this paper, 30 independent runs are
performed.

B. Experimental results
Table II summarizes the experimental results. The table

shows the known “optimal” solution for each problem and the
statistics from the 30 independent runs. These include the best,
median, mean, and worst values and the standard deviation
of the objective values found. Also, the average number of
evaluations of the objective function and the constraints to find
the best solution in each run is shown in the columns labeled
#func and #const respectively. The last column shows how
many evaluations of objective function can be omitted.

For problems g01, g04, g05, g06, g08, g09, g11,
g12 and g13, the optimal solutions are found consistently in
all 30 runs. For problems g03, g07 and g10, the optimal
or near-optimal solutions are found in all 30 runs. These
results show that the εDEkr is a very efficient and stable
algorithm. As for the problem g02, the problem is a multi-
modal problem that has many local optima with peaks near
the global optimum within the feasible region. Many other
methods cannot constantly obtain high quality solutions, but
the εDEkr attained about -0.8 on average within 50,000 FEs.
Thus, it is thought that the εDEkr has a high ability to solve
multi-modal problems.

In the ε constrained method, the objective function and
the constraints are treated separately. So, when the order
relation of the search points can be decided only by the
constraint violation of the constraints, the objective function
is not evaluated, or the evaluation of the objective function
can often be omitted. Thus, the number of evaluations of the
objective function is less than the number of evaluations of
the constraints. This nature of the εDEkr contributes to the
efficiency of the algorithm especially when the objective func-
tion is computationally demanding. The number of evaluations
of the constraint violations to find the best solution ranged
from about 2,500 to 50,000. The number of evaluations of the
objective function ranged between about 1,600 and 20,000.
For these problems, the εDEkr can omit the evaluation of the
objective function about 20% to 85%. Therefore, the εDEkr
can find optimal solutions very efficiently, especially from
the viewpoint of the number of evaluations for the objective
function.

These results show that the εDEkr is a very efficient and
stable algorithm.

C. Comparison with other methods
There are some methods that solved the same thirteen

problems. In the methods, for comparative studies we chose the
simple multimembered evolution strategy (SMES) proposed
by Mezura-Montes and Coello [24], the adaptive trade-off
model (ATMES) proposed by Wang et al. [19], multiobjective
method (HCOEA) proposed by Wang et al. [32], ECTHT-
EP2 proposed by Mallipeddi and Suganthan [33], and the εDE
proposed by Takahama and Sakai [6], because the results of
these methods are better than the results of the other methods,
and they reported good quality statistical information. Also, A-
DDE proposed by Mezura-Montes and Palomeque-Ortiz [45],
which adopts adaptive parameter control, is included in the
comparison.

Table III shows the comparisons of the best, median,
average, worst values and the standard deviation for the seven
methods. The maximum number of FEs is also shown in
“FEmax”.

All methods found optimal solutions in all 30 runs for g01,
g03, g04, g08, g11 and g12. In other problems, from the
viewpoint of quality of solutions, it is thought that the εDE
are the best methods followed by ECHT-EP2 and the εDEkr,
where the difference between ECHT-EP2 and the εDEkr is
very small. However, the number of the function evaluations
in the εDEkr is very small, that is only about one fourth,
compared with that in the εDE and ECHT-EP2. Thus, it is
thought that the εDEkr is better than the εDE and ECHT-EP2
from the viewpoint of the efficiency.

VII. CONCLUSIONS

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve unconstrained opti-
mization problems. In this study, we proposed a new scheme
of combining the ε constrained method and the estimated
comparison using kernel regression to improve the efficiency,
and proposed the εDEkr. We showed that the εDEkr could
solve thirteen benchmark problems most efficiently compared
with many other methods.

In the future, we will apply the εDEkr to various real world
problems that have expensive objective functions.
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