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Abstract—The ε constrained method is an algorithm transfor-
mation method, which can convert algorithms for unconstrained
problems to algorithms for constrained problems using the ε
level comparison, which compares search points based on the
pair of objective value and constraint violation of them. We have
proposed the ε constrained differential evolution εDE, which is
the combination of the ε constrained method and differential
evolution (DE), and have shown that the εDE can run very
fast and can find very high quality solutions. In this study, we
propose the ε constrained rank-based DE (εRDE), which adopts
a new and simple scheme of controlling algorithm parameters
in DE. In the scheme, different parameter values are selected
for each individual. Small scaling factor and large crossover
rate are selected for good individuals to improve the efficiency
of search. Large scaling factor and small crossover rate are
selected for bad individuals to improve the stability of search.
The goodness is given by the ranking information. The εRDE
is a very efficient constrained optimization algorithm that can
find high-quality solutions in very small number of function
evaluations. It is shown that the εRDE can find near optimal
solutions stably in about half the number of function evaluations
compared with various other methods on well known nonlinear
constrained problems.
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I. INTRODUCTION

Constrained optimization problems, especially nonlinear op-
timization problems, where objective functions are minimized
under given constraints, are very important and frequently
appear in the real world. There exist many studies on solving
constrained optimization problems using evolutionary algo-
rithms (EAs) [1]–[4]. EAs basically lack a mechanism to
incorporate the constraints of a given problem in the fitness
value of individuals. Thus, many studies have been dedicated
to handle the constraints in EAs. In most successful constraint-
handling techniques, the objective function value and the
sum of constraint violations, or the constraint violation, are
separately handled and an optimal solution is searched with
balancing the optimization of the function value and the
optimization of the constraint violation.

The ε constrained differential evolution (εDE) adopted one
of such techniques called the ε constrained method and also
adopted differential evolution (DE) as an optimization engine.
The εDE can solve constrained problems successfully and
stably [5]–[10], including engineering design problems [11].
The ε constrained method [8] is an algorithm transformation
method, which can convert algorithms for unconstrained prob-
lems to algorithms for constrained problems using the ε level
comparison, which compares search points based on the pair of

objective value and constraint violation of them. The method
has been applied various algorithms such as PSO and GA,
and proposed the εPSO [12] and the hybrid algorithm of the
εPSO and εGA [13]. It has been shown that the method has
general-purpose properties.

In this study, we propose the ε constrained rank-based DE
(εRDE) in order to improve the efficiency and stability of
the εDE. The efficiency and stability depend largely on the
selection of algorithm parameters in DE. The improvement of
the efficiency can be attained by strengthening the convergence
of search, which can be realized by using small scaling factor
and large crossover rate. The improvement of the stability can
be attained by maintaining the divergence of search, which can
be realized by using large scaling factor and small crossover
rate. In order to improve the efficiency and stability, it needs
to balance between convergence and divergence. In the rank-
based DE, different parameter values are selected to each
individual. When the base vector is good, small scaling factor
and large crossover rate is selected and the convergence is
realized. Also, when the base vector is bad, large scaling factor
and small crossover rate are selected and the divergence is
realized. The goodness is given by the rank of the base vector
in all individuals.

Well known thirteen constrained problems mentioned in
[2] are solved by the εRDE within very fewer, or about
half, number of function evaluations. The effectiveness of the
εRDE is shown by comparing it with various methods on the
problems.

In Section II, differential evolution is explained briefly. In
Section III, constrained optimization methods and adaptive
control methods are reviewed. The ε constrained method is
defined in Section IV. The εRDE is explained in Section V.
In Section VI, experimental results on thirteen constrained
problems are shown and the results of the εRDE are compared
with those of other methods. Finally, conclusions are described
in Section VII.

II. DIFFERENTIAL EVOLUTION

Differential evolution is proposed by Storn and Price [14].
DE is a stochastic direct search method using population
or multiple search points. DE has been successfully ap-
plied to the optimization problems including non-linear, non-
differentiable, non-convex and multi-modal functions. It has
been shown that DE is fast and robust to these functions.

There are some variants of DE that have been proposed,
such as DE/best/1/bin and DE/rand/1/exp. The variants are



classified using the notation DE/base/num/cross. “base” in-
dicates the method of selecting a parent that will form the base
vector. For example, DE/rand selects the parent for the base
vector at random from the population. DE/best selects the best
individual in the population.

In DE/rand/1, for each individual xi, three individuals
xp1, xp2 and xp3 are chosen from the population without
overlapping xi and each other. Fig. 1 shows that a new vector,
or a mutant vector x′ is generated by the base vector xp1 and
the difference vector xp2 − xp3, where F is a scaling factor.

“num” indicates the number of difference vectors used
to perturb the base vector. “cross” indicates the crossover
mechanism used to create a child. For example, ‘bin’ shows
that the crossover is controlled by binomial crossover using
constant crossover rate, and ‘exp’ shows that the crossover is
controlled by a kind of two-point crossover using exponen-
tially decreasing the crossover rate. Fig. 2 shows the binomial
and exponential crossover. A new child xchild is generated
from the parent xi and the mutant vector x′, where CR is a
crossover rate.

mutation DE/rand/1
p1=randint(1,N) s.t. p1 6= i;
p2=randint(1,N) s.t. p2 6∈ {i, p1};
p3=randint(1,N) s.t. p3 6∈ {i, p1, p2};
x′=xp1+F (xp2 − xp3)

Fig. 1. Mutation operation, where randint(1,n) generates an integer randomly
from [1, n].

binomial crossover DE/·/·/bin
jrand=randint(1,n);
for(k=1; k ≤ n; k++) {

if(k == jrand || u(0, 1) < CR) xchild
k =x′

k;
else xchild

k =xi
k;

}
exponential crossover DE/·/·/exp

k=1; j=randint(1,n);
do {

xchild
j =x′

j;
k=k+1; j=(j + 1)%n;

} while(k ≤ n && u(0, 1) < CR);
while(k ≤ n) {

xchild
j =xi

j;
k=k+1; j=(j + 1)%n;

}

Fig. 2. Crossover operations

In this study, DE/rand/1/exp, where the number of difference
vector is 1 or num = 1, is used.

III. CONSTRAINED OPTIMIZATION AND PREVIOUS WORKS

A. Constrained Optimization Problems

In this study, the following optimization problem (P) with
inequality constraints, equality constraints, upper bound con-

straints and lower bound constraints will be discussed.

(P) minimize f(x)
subject to gj(x) ≤ 0, j = 1, . . . , q

hj(x) = 0, j = q + 1, . . . ,m
li ≤ xi ≤ ui, i = 1, . . . , n,

(1)

where x = (x1, x2, · · · , xn) is an n dimensional vector,
f(x) is an objective function, gj(x) ≤ 0 and hj(x) = 0
are q inequality constraints and m − q equality constraints,
respectively. Functions f, gj and hj are linear or nonlinear
real-valued functions. Values ui and li are the upper bound
and the lower bound of xi, respectively. Also, let the feasible
space in which every point satisfies all constraints be denoted
by F and the search space in which every point satisfies the
upper and lower bound constraints be denoted by S (⊃ F).

B. Constrained optimization methods

EAs for constrained optimization can be classified into
several categories according to the way the constraints are
treated as follows [3]:
(1) Constraints are only used to see whether a search point is
feasible or not. Approaches in this category are usually called
death penalty methods. In this category, generating initial
feasible points is difficult and computationally demanding
when the feasible region is very small.
(2) The constraint violation, which is the sum of the violation
of all constraint functions, is combined with the objective
function. The penalty function method is in this category [15]–
[18]. The main difficulty of the method is the selection of
an appropriate value for the penalty coefficient that adjusts the
strength of the penalty. In order to solve the difficulty, some
methods, where a kind of the penalty coefficient is adaptively
controlled [19], [20], are proposed.
(3) The constraint violation and the objective function are
used separately. In this category, both the constraint violation
and the objective function are optimized by a lexicographic
order in which the constraint violation precedes the objective
function. Deb [21] proposed a method that adopts the extended
objective function, which realizes the lexicographic ordering.
Takahama and Sakai proposed the α constrained method [22],
and ε constrained method [12] that adopt a lexicographic
ordering with relaxation of the constraints. Runarsson and Yao
[23] proposed the stochastic ranking method that adopts the
stochastic lexicographic order, which ignores the constraint vi-
olation with some probability. Mezura-Montes and Coello [24]
proposed a comparison mechanism that is equivalent to the
lexicographic ordering. Venkatraman and Yen [25] proposed a
two-step optimization method, which first optimizes constraint
violation and then objective function. These methods were
successfully applied to various problems.
(4) The constraints and the objective function are optimized by
multiobjective optimization methods. In this category, the con-
strained optimization problems are solved as the multiobjective
optimization problems in which the objective function and
the constraint functions are objectives to be optimized [26]–
[32]. But in many cases, solving multiobjective optimization



problems is a more difficult and expensive task than solving
single objective optimization problems.
(5) Hybridization methods. In this category, constrained prob-
lems are solved by combining some of above mentioned meth-
ods. Mallipeddi and Suganthan [33] proposed a hybridization
of the methods in category (2), (3) and (4).

C. Parameter control methods in DE

The performance of DE is affected by control parameters
such as the scaling factor F , the crossover rate CR and
the population size N , and is also affected by the type of
operations such as mutation strategies and crossover opera-
tions. Many researchers have been studying on controlling the
parameters and the operations. The methods of the control
can be classified into two categories: observation-based and
success-based control.
(1) observation-based control: The current search state is
observed, proper parameter values are inferred according to
the observation, and parameters and/or strategies are dynam-
ically controlled. FADE(Fuzzy Adaptive DE) [34] observes
the movement of search points and the change of function
values between successive generations, and controls F and
CR. DESFC(DE with Speciation and Fuzzy Clustering) [35]
adopts fuzzy clustering, observes partition entropy of search
points, and controls CR and the mutation strategies between
the rand and the species-best strategy.
(2) success-based control: It is recognized as a success case
when a better search point than the parent is generated. The
parameters and/or strategies are adjusted so that the values in
the success cases are frequently used. It is thought that the self-
adaptation, where parameters are contained in individuals and
are evolved by applying evolutionary operators to the param-
eters, is included in this category. DESAP(Differential Evolu-
tion with Self-Adapting Populations) [36] controls F,CR and
N self-adaptively. SaDE(Self-adaptive DE) [37] controls the
mean value of CR according to the mean value in success
cases and controls the selection probability of the mutation
strategies according to the success rates. jDE(self-adaptive
DE algorithm) [38] controls F and CR self-adaptively.
JADE(adaptive DE with optional external archive) [39] con-
trols the mean values of F and CR according to the mean
values in success cases.

In the category (1), it is difficult to select proper type of
observation which is independent of the optimization problem
and its scale. In the category (2), when a new good search
point is found near the parent, parameters are adjusted to the
direction of convergence. In problems with ridge landscape
or multimodal landscape, where good search points exist in
small region, parameters are tuned for small success and big
success will be missed. Thus, search process would be trapped
at a local optimal solution.

In this study, we propose new observation-based control,
which in the category (1) and is independent of the optimiza-
tion problem and its scale. In the control, F and CR are tuned
according to the ranking information of the base vector.

IV. THE ε CONSTRAINED METHOD

A. Constraint violation and ε level comparisons

In the ε constrained method, constraint violation φ(x) is
defined. The constraint violation can be given by the maximum
of all constraints or the sum of all constraints.

φ(x) = max{max
j

{0, gj(x)},max
j

|hj(x)|} (2)

φ(x) =
∑
j

||max{0, gj(x)}||p +
∑
j

||hj(x)||p (3)

where p is a positive number.
The ε level comparison is defined as an order relation on

a pair of objective function value and constraint violation
(f(x), φ(x)). If the constraint violation of a point is greater
than 0, the point is not feasible and its worth is low. The
ε level comparisons are defined basically as a lexicographic
order in which φ(x) precedes f(x), because the feasibility
of x is more important than the minimization of f(x). This
precedence can be adjusted by the parameter ε.

Let f1 (f2) and φ1 (φ2) be the function values and the
constraint violation at a point x1 (x2), respectively. Then,
for any ε satisfying ε ≥ 0, ε level comparisons <ε and ≤ε

between (f1, φ1) and (f2, φ2) are defined as follows:

(f1, φ1) <ε (f2, φ2) ⇔

f1 < f2, if φ1, φ2 ≤ ε
f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise
(4)

(f1, φ1) ≤ε (f2, φ2) ⇔

f1 ≤ f2, if φ1, φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2

φ1 < φ2, otherwise
(5)

In case of ε=∞, the ε level comparisons <∞ and ≤∞ are
equivalent to the ordinary comparisons < and ≤ between
function values. Also, in case of ε = 0, <0 and ≤0 are
equivalent to the lexicographic orders in which the constraint
violation φ(x) precedes the function value f(x).

B. The properties of the ε constrained method

The ε constrained method converts a constrained optimiza-
tion problem into an unconstrained one by replacing the order
relation in direct search methods with the ε level comparison.
An optimization problem solved by the ε constrained method,
that is, a problem in which the ordinary comparison is replaced
with the ε level comparison, (P≤ε ), is defined as follows:

(P≤ε ) minimize≤ε f(x), (6)

where minimize≤ε denotes the minimization based on the ε
level comparison ≤ε. Also, a problem (Pε) is defined such
that the constraints of (P), that is, φ(x) = 0, is relaxed and
replaced with φ(x) ≤ ε:

(Pε) minimize f(x)
subject to φ(x) ≤ ε

(7)

It is obvious that (P0) is equivalent to (P).
For the three types of problems, (Pε), (P≤ε ) and (P), the

following theorems are given based on the ε constrained
method [12].



Theorem 1: If an optimal solution (P0) exists, any optimal
solution of (P≤ε ) is an optimal solution of (Pε).

Theorem 2: If an optimal solution of (P) exists, any optimal
solution of (P≤0 ) is an optimal solution of (P).

Theorem 3: Let {εn} be a strictly decreasing non-negative
sequence and converge to 0. Let f(x) and φ(x) be continuous
functions of x. Assume that an optimal solution x∗ of (P0)
exists and an optimal solution x̂n of (P≤εn

) exists for any
εn. Then, any accumulation point to the sequence {x̂n} is an
optimal solution of (P0).

Theorem 1 and 2 show that a constrained optimization
problem can be transformed into an equivalent unconstrained
optimization problem by using the ε level comparison. So,
if the ε level comparison is incorporated into an existing
unconstrained optimization method, constrained optimization
problems can be solved. Theorem 3 shows that, in the ε
constrained method, an optimal solution of (P0) can be given
by converging ε to 0 as well as by increasing the penalty
coefficient to infinity in the penalty method.

V. THE εRDE

In this section, the rank-based DE (RDE) are described first
and then the εRDE is defined.

A. Rank-based Differential Evolution (RDE)

It is very important to balance between the convergence
and the divergence of search in order to improve the search
efficiency.

• Convergence will be improved by generating new points
near good search points, which can be realized by adopt-
ing the best strategy or selecting small scaling factor.
However, search points will often be trapped at a local
solution.

• Divergence will be improved by generating new points
in wide range, which is realized by adopting the rand
strategy or selecting large scaling factor. However, the
search efficiency will be lowered.

In this study, we propose to balance between the conver-
gence and the divergence using ranking information:

• Convergence: If the base vector is good, the mutant
vector is generated near the base vector by adopting small
scaling factor. Also, the trial vector is generated near the
mutant vector by adopting large crossover rate.

• Divergence: If the base vector is bad, the mutant vector
is generated in wide range by adopting large scaling
factor. Also, the trial vector is generated near the target
vector and far from the mutant vector by adopting small
crossover rate.

In order to achieve the idea above, we propose to select
different values of F and CR for each individual according
to the rank of the base vector, where the rank of the best
individual is 1. Let a parent be denoted by xi, the base vector
be denoted by xb and the rank of the base vector be denoted
by Rb. The scaling factor Fi and the crossover rate CRi for

xi can be defined by the following equations:

Fi = Fmin + (Fmax − Fmin)
Rb − 1

N − 1
(8)

CRi = CRmax − (CRmax − CRmin)
Rb − 1

N − 1
(9)

where Fmin and Fmax are parameters to specify the minimum
and maximum value of F , and CRmin and CRmax are
parameters to specify the minimum and maximum of CR. If
the base vector is the best individual, F becomes the minimum
value and CR becomes the maximum value. If the base vector
is the worst individual, F becomes the maximum value and
CR becomes the minimum value. Thus, the idea is realized.

B. The algorithm of the εRDE

The εRDE is the DE that adopts an observation-based
control of algorithm parameters, a simple modification in
offspring generation, and the ε constrained method.

The algorithm of the εRDE is as follows:

0. Parameter setup. The range of scaling factor [Fmin,
Fmax] and the range of crossover rate [CRmin, CRmax]
are given.

1. Initialization of the individuals. Initial N individuals
{xi, i = 1, 2, · · · , N} are generated randomly in search
space S and form an initial population.

2. Initialization of the ε level. An initial ε level is given
by the ε level control function ε(0).

3. Termination condition. If the number of function eval-
uations exceeds the maximum number of evaluations
FEmax, the algorithm is terminated.

4. Ranking all individuals. The ranks {Ri} of the individ-
uals {xi} are given according to the ε level comparison.

5. DE operation. Each individual xi is selected as a par-
ent. A new child xnew is generated by DE/rand/1/exp
operation with a scaling factor Fi and a crossover rate
CRi that are given by Eqs. (8) and (9), respectively.

6. Survivor selection. If the new one is better than or equal
to the parent based on the ε level comparison, the parent
xi is immediately replaced by the trial vector xnew

because not discrete generation model but continuous
generation model is adopted. Until all individuals are
selected, go back to 5 in order to select the next
individual as a parent.

7. Control of the ε level. The ε level is updated by the ε
level control function ε(t).

8. Go back to 3.

C. Controlling the ε level

The ε level is controlled according to Eqs. (10) and (11).
The initial ε level ε(0) is the constraint violation of the top θ-
th individual in the initial search points. The ε level is updated
until the number of iterations t becomes the control generation
Tc. After the number of iterations exceeds Tc, the ε level is



εRDE/rand/1/exp()
{
// Initialize the individuals

P=N individuals {xi} generated randomly in S;
// Initialize the ε level

ε=ε(0);
for(t=1; termination condition is false; t++) {

{Ri}=Ranks of {xi} according to <ε;
for(i=1; i ≤ N; i++) {

xr1=Randomly selected from P(r1 6= i);
xr2=Randomly selected from P(r2 6∈ {i, r1});
xr3=Randomly selected from P(r3 6∈ {i, r1, r2});
Fi=Fmin+(Fmax-Fmin)(Rr1-1)/(N − 1);
CRi=CRmax-(CRmax-CRmin)(Rr1-1)/(N − 1);
xnew=xi;
j=select randomly from [1, n];
k=1;
do {

xnew
j =xr1,j+Fi(xr2,j − xr3,j);

j=(j + 1)%n;
k++;

} while(k ≤ n && u(0, 1) < CRi);
if((f(xnew), φ(xnew)) <ε (f(xi), φ(xi)))

xi=xnew;
}

// Control the ε level
ε=ε(t);

}
}

Fig. 3. The algorithm of the ε constrained rank-based differential evolution,
where ε(t) is the ε level control function, FE is the number of function
evaluations, and u(l, r) is a uniform random number generator in [l, r].

set to 0 to obtain solutions with minimum constraint violation.

ε(0) = φ(xθ) (10)

ε(t) =

{
ε(0)(1− t

Tc
)cp, 0 < t < Tc,

0, t ≥ Tc
(11)

where xθ is the top θ-th individual and θ = 0.2N . This control
is effective to solve problems with equality constraints.

Fig. 3 shows the algorithm of the εRDE.

VI. SOLVING NONLINEAR OPTIMIZATION PROBLEMS

In this paper, thirteen benchmark problems that are men-
tioned in some studies [3], [23], [24] are optimized, and the
results by the εRDE are compared with those results.

A. Test problems and the experimental conditions

In the thirteen benchmark problems, problems g03, g05,
g11 and g13 contain equality constraints. In problems with
equality constraints, the equality constraints are relaxed and
converted to inequality constraints according to Eq. (12),
which is adopted in many methods:

|hj(x)| ≤ δ, δ > 0, (12)

where δ = 10−4. Problem g12 has disjointed feasible regions.
Table I shows the outline of the thirteen problems [24],
[40]. The table contains the number of variables n, the form
of the objective function, the number of linear inequality

constraints (LI), nonlinear inequality constraints (NI), linear
equality constraints (LE), nonlinear equality constraints (NE)
and the number of constraints active at the optimal solution.

TABLE I
SUMMARY OF TEST PROBLEMS

f n Form of f LI NI LE NE active
g01 13 quadratic 9 0 0 0 6
g02 20 nonlinear 1 1 0 0 1
g03 10 polynomial 0 0 0 1 1
g04 5 quadratic 0 6 0 0 2
g05 4 cubic 2 0 0 3 3
g06 2 cubic 0 2 0 0 2
g07 10 quadratic 3 5 0 0 6
g08 2 nonlinear 0 2 0 0 0
g09 7 polynomial 0 4 0 0 2
g10 8 linear 3 3 0 0 6
g11 2 quadratic 0 0 0 1 1
g12 3 quadratic 0 93 0 0 0
g13 5 nonlinear 0 0 1 2 3

The parameters for the ε constrained method are as follows:
Every constraint violation is defined as a simple sum of
constraints, or p = 1 in Eq. (3). The ε level is controlled using
Eqs. (10) and (11) with cp = 5, Tc = 1000 for problems
with equality constraints and is 0 for other problems. The
parameters for RDE are: The number of search points N = 40,
the maximum number of evaluations FEmax = 100, 000, the
scaling factor Fmin = 0.6 and Fmax = 0.95, the crossover
rate CRmin = 0.85 and CRmax = 0.95. In this paper, 30
independent runs are performed.

B. Experimental results

Table II summarizes the experimental results. The table
shows the known “optimal” solution for each problem and the
statistics from the 30 independent runs. These include the best,
median, mean, and worst values and the standard deviation
of the objective values found. Also, the average number of
evaluations of the objective function and the constraints to
find the best solution in each run is shown in the columns
labeled #func and #const respectively. The last column shows
how many evaluations of objective function can be omitted.

For problems g01, g04, g05, g06, g08, g09, g11, g12
and g13, the optimal solutions are found consistently in all
30 runs. For all other problems g02, g03, g07 and g10, the
optimal or near-optimal solutions are found in all 30 runs.
These results show that the εRDE is a very efficient and
stable algorithm. As for the problem g02, the problem is a
multi-modal problem that has many local optima with peaks
near the global optimum within the feasible region. Many
other methods cannot constantly obtain high quality solutions,
but the εRDE found near-optimal solutions under −0.8036
constantly within 100,000 FEs. Thus, it is thought that the
εRDE has a high ability to solve multi-modal problems.

The εRDE is a very fast algorithm. The average execution
times ranged from 0.05 seconds to 0.3 seconds using a
notebook PC with 2.0GHz Core i7. The execution times are
less than 1/8 seconds in all problems, except for g12.



TABLE II
EXPERIMENTAL RESULTS ON 13 BENCHMARK PROBLEMS USING STANDARD SETTINGS; 30 INDEPENDENT RUNS WERE PERFORMED

f optimal best median mean worst st. dev. #func #const omit(%)
g01 -15.000 -15.000000 -15.000000 -15.000000 -15.000000 0.000e+00 35799.8 56508.2 36.7
g02 -0.803619 -0.803618 -0.803615 -0.803614 -0.803605 3.027e-06 55092.2 99741.8 44.8
g03 -1.000 -1.000500 -1.000500 -1.000500 -1.000498 4.372e-07 44910.8 99871.9 55.0
g04 -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672 0.0000e+00 28003.3 51613.7 45.7
g05 5126.498 5126.496714 5126.496714 5126.496714 5126.496714 0.000e+00 21801.7 66033.2 67.0
g06 -6961.814 -6961.813876 -6961.813876 -6961.813876 -6961.813876 2.803e-12 5482.9 10152.5 46.0
g07 24.306 24.306209 24.306210 24.306210 24.306215 1.406e-06 29535.8 99829.8 70.4
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0.000e+00 3606.2 4063.4 11.3
g09 680.630 680.630057 680.630057 680.630057 680.630057 0.000e+00 19089.7 42266.1 54.8
g10 7049.248 7049.248021 7049.248021 7049.248021 7049.248022 2.125e-07 17552.8 99820.2 82.4
g11 0.750 0.749900 0.749900 0.749900 0.749900 0.000e+00 26255.5 35536.4 26.1
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 0.000e+00 4012.1 7872.7 49.0
g13 0.053950 0.053942 0.053942 0.053942 0.053942 0.000e+00 23717.9 68253.4 65.3

In the ε constrained method, the objective function and
the constraints are treated separately. So, when the order
relation of the search points can be decided only by the
constraint violation of the constraints, the objective function
is not evaluated, or the evaluation of the objective function
can often be omitted. Thus, the number of evaluations of the
objective function is less than the number of evaluations of the
constraints. This nature of the εRDE contributes to the effi-
ciency of the algorithm especially when the objective function
is computationally demanding. The number of evaluations of
the constraint violations to find the best solution ranged from
about 4,000 to 100,000. The number of evaluations of the
objective function ranged between about 3,600 and 55,000.
For these problems, the εRDE can omit the evaluation of the
objective function about 10% to 80%. Therefore, the εRDE
can find optimal solutions very efficiently, especially from
the viewpoint of the number of evaluations for the objective
function.

These results show that the εRDE is a very efficient and
stable algorithm.

C. Comparison with other methods
There are some methods that solved the same thirteen prob-

lems. In the methods, for comparative studies we chose the
simple multimembered evolution strategy (SMES) proposed
by Mezura-Montes and Coello [24], the adaptive trade-off
model (ATMES) proposed by Wang et al. [20], multiobjective
method (HCOEA) proposed by Wang et al. [32], ECTHT-
EP2 proposed by Mallipeddi and Suganthan [33], and the εDE
proposed by Takahama and Sakai [8], because the results of
these methods are better than the results of the other methods,
and they reported good quality statistical information. Also, A-
DDE proposed by Mezura-Montes and Palomeque-Ortiz [41],
which adopts adaptive parameter control, is included in the
comparison.

Table III shows the comparisons of the best, median, aver-
age, worst values and the standard deviation for the seven
methods. The maximum number of FEs is also shown in
“FEmax”.

All methods found optimal solutions in all 30 runs for
g01, g03, g04, g08, g11 and g12. In other problems, from
the viewpoint of quality of solutions, it is thought that the

εRDE and the εDE are the best methods followed by ECHT-
EP2, because the εRDE and the εDE found high-quality near
optimal solutions stably in all problems. As for the εRDE,
in problem g02, the εRDE found better solutions on average
than the εDE and ECHT-EP2. As for the εDE, in problem g07,
the εDE found better solutions on average than the εRDE and
ECHT-EP2. As for the εRDE and the εDE, in problems g02,
g07 and g10, both methods found better solutions on average
than ECHT-EP2. Also, the number of FEs in the εRDE is much
less than that in the εDE and ECHT-EP2. Thus, it is thought
that the εRDE is better than the εDE and ECHT-EP2 from the
viewpoint of the efficiency.

VII. CONCLUSIONS

Differential evolution is known as a simple, efficient and
robust search algorithm that can solve unconstrained optimiza-
tion problems. In this study, we proposed a new and simple
scheme of controlling parameters in order to improve the effi-
ciency and stability using ranking information, and proposed
the εRDE. We showed that the εRDE could solve thirteen
benchmark problems most efficiently and stably compared
with many other methods.

In the future, we will apply the εRDE to various real world
problems that have large numbers of decision variables and
constraints.
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